12.2.1排烟管道的安装试验应符合本规范第5章的有关规定。12.2.2排烟管道的隔热层应采用厚度不小于40mm的不燃绝热材料。12.2.3砖、混凝土风道的制作应保证管道的气密性,灰缝应饱满,内表面水泥砂浆面层应平整。12.2.4送风口、排烟口的固定应可靠,表面应平整、无变形、调节灵活。排烟口距可燃物或可燃构件的距离不应小于1.5m。排烟口安装时不应影响防倒灌设施正常发挥作用。排烟口应安装板式排烟口,不应漏风。12.2.5排烟风机的安装应符合下列规定:1当**排烟风机设在混凝土或钢架基础上时可不设减振装置;若需设置减振装置,则不应使用橡胶减振装置。2排烟风机宜安装在该系统比较高排烟口之上,并宜安在机房内,机房与相邻部位隔墙应符合防火要求。无尘室除了管控空气中的微尘粒子之外,还分成正压无尘室与负压无尘室。国内无尘室检测目的

11.3.6安装空调设备四周的设备层地面应作防水处理,并应平整、无麻面、不起尘。该处地面应设挡水线,不应设排水沟。挡水线范围之内设地漏,地漏水封高度应符合设备技术文件要求。当无明确要求时,不应小于70mm。冷凝水出水管应有阀门,无冷凝水排出季节阀门应关闭,并应有提示标志。11.3.7当空调设备内表冷器设在负压段时,地面应设不小于冷凝水出水水封段高度的水泥底座,底座高度不宜低于200mm。11.3.8空调设备内加湿器的安装应设**支吊架,不得在空调机组壁板上开设固定支架用的安装孔。加湿器喷管与机组壁板间应做好绝热、密封处理。实验室环境无尘室检测技术好高湿度实际上减小了洁净室表面的静电荷积累──这是人们希望的结果。

9.2.1纯水系统的设备配置除应满足所需水量和水质的要求外,还应满足运行灵活、安全可靠、便于操作管理、运行费用低等要求。9.2.2纯水的制备、储存和输送设备,应符合电子产品生产工艺的要求,并应符合下列规定:1纯水的制备、终端处理设备的选型和制造材料的选择,应满足供水水质、终端水质的要求;2纯水储罐、输送设备的选型和制造材料的选择,应确保水 质污染少、密封性好,不得有渗气现象;3纯水制备、储存、输送设备应有效地防止水质降低。
12.3.1防火卷帘安装应符合下列规定:1防火卷帘洞口上端至顶棚之间应采用防火墙、不燃或难燃材料封堵。当采用不燃或难燃材料封堵时,其耐火极限应不低于防火卷帘的耐火极限。如防火卷帘采用水幕保护,其封堵材料亦应采用水幕保护。2钢质卷帘的帘板应平直,装配成卷帘后,不应存在孔洞或缝隙。3防火防烟卷帘的导轨内设置的防烟装置的材料应为不燃或难燃材料。防烟装置与帘面应均匀紧密贴合,其贴合面长度不应小于导轨长度的80%。4用于疏散通道上的防火卷帘,其两侧应安装由感烟、感温火灾探测器组成的火灾探测器组合。12.3.2防火门和防火窗的安装应符合下列规定:1安装在防火门和防火窗上的合页、插销等五金配件应是经相关检测机构检验合格的产品。2防火门的开启角度不应小于90°,并应具有在发生火灾时能迅速关闭的功能。尘室通常采用高效的HEPA(高效颗粒空气)过滤器或ULPA(超高效颗粒空气)过滤器,可有效过滤微小的灰尘。

2.4.1洁净厂房的自动控制系统宜采用集散式网络结构,并应具有稳定、可靠、节能、开放和可扩展性。12.4.2洁净厂房应对净化空调、供热、供冷、纯水和气体供应等系统进行自动监控。12.4.3洁净室(区)内外的压差监测,宜采用压差变送器通过控制系统调节洁净室(区)的送风量或回风量。12.4.4净化空调系统采用电加热器时,电加热器与风机应联锁控制,并应设置无风、超温断电保护;当采用电加湿器时,应设置无水、无风断电保护。12.4.5在满足生产工艺要求的前提下,宜对风机、水泵等动力设备采取变频调速等节能控制措施。无尘室的存在对于许多前沿科技的发展起着至关重要的作用。江苏洁净度无尘室检测认真负责
由HEPA或ULPA与风机组合在一起,构成自身可提供动力的末端空气净化的装置。国内无尘室检测目的
无尘车间工程是指按照客户的要求,提供对微粒、有害空气、细菌等污染物的有效控制,温度、湿度、噪声、照度、洁净度、室内压差、气流速度与气流分布、振动、静电等各项指标均满足安全生产需求的洁净受控空间。无尘车间的主要作用在于为产品生产(如硅芯片等)和服务提供所需环境的洁净程度,以及温湿度、微震动、噪声、照度等各项指标,使相关产品和服务能够在一个满足要求的、受控的、良好的环境空间中进行生产和操作,从而达到提高产品生产的良品率,改善和提升相关服务质量的目标。国内无尘室检测目的
无尘室紫外线消毒的剂量-效果建模某医院手术室验证UVC消毒效果,发现265nm波长照射30分钟可使表面菌落数下降4log,但存在阴影区(剂量不足)。通过蒙特卡洛模拟优化灯管布局,阴影面积减少90%。但UVC对橡胶手套产生老化,改用LED阵列并旋转照射角度,材料寿命延长至5000小时。无尘室空气幕的流场稳定性研究某实验室安装空气幕隔离走廊污染,但CFD模拟显示,当门开启频率>2次/分钟时,流场紊乱导致PM2.5渗入量增加300%。改进方案:①增设涡旋发生器增强气幕连续性;②采用PWM控制风速波动<±5%。实测渗入量降至5%,能耗增加12%,通过太阳能光伏板供电实现净节能。对比历史检测数据,有助于...