建筑隔声测量是指根据测量房间与房间或房间与外部的隔声量,进而对房间采取相应屏蔽或隔声措施的一种测量手段。根据GB/T19889《声学建筑和建筑构件隔声测量》规定,建筑隔声测量可分为三种:空气声隔声测量、撞击声隔声测量以及外墙隔声测量
空气声隔声测量空气声隔声测量,通过测量房间与房间的隔音量,进而对房间之间构件隔声量进行评价。
撞击声隔声测量撞击声隔声测量(即楼板撞击声隔声测量),通过测量标准撞击器或撞击球打击地板的隔声量,进而对房间楼板构件进行评价。
外墙隔声测量外墙隔声测量,通过测量房间与外部的隔音量,进而对房间与外部之间构件隔声量进行评价。 隔声检测,广州翁迪,专业检测机构,欢迎咨询服务!汕头房间之间空气声隔声检测系统
吸声技术一般指能降低室内的混杂声的材料,这种技术通常是用于室内,在墙壁、天花板或者悬挂有吸声体时,声波反射到这些材料表面会进入吸声材料的孔隙,从而引起孔隙中的细小纤维与空气之间的摩擦,使原有的声能转变成了热能,从而被吸收、消耗。
吸声材料在吸声性能方面愈好、面积愈大,则降低噪音的效果就愈好。对于降低一般房间的噪音,可采取3~8db的降噪量,假如房间的原有吸声性能比较差,可采用8~12db的降噪量。吸声材料也可以多种类型叠加混用,效果更佳。 惠州绿色建筑隔声检测设备方案隔声检测系统以及仪器欢迎咨询广州翁迪仪器!
为推动声学技术在建筑设计和建筑工程上的应用,提高检测工作的效率和质量,促进检测工作的展,帮助行业单位深入了解有关检测技术要求和相关法规,满足检测人员对技术的需求。2023年12月1日斯万泰科声学与振动技术有限公司在广州白云区举办《建筑声学检测技术及现场实操新标准应用》培训班。
培训内容:
新版民用建筑隔声设计规范(意见征求稿)全文声学部分宣贯;
新版《绿色建筑评价标准》GB/T50378-2019、新版《声学建筑和建筑构件隔声测量第7部分:撞击声隔声的现场测量》GB/T19889.7-2022、建筑评价标准声学部分解析;建筑声学基础知识、声学原理、噪声控制技术隔声(空气声隔声、撞击声隔声)、吸声、隔振、消声;建筑声学现场检测技术、环境噪声现场检测技术、室内噪声现场检测技术、结构噪声现场检测技术、建筑空气声隔声性能现场检测技术楼板撞击声隔声性能现场检测技术、建筑室内振动现场检测技术;建筑声学实验室检测技术、建筑材料声学性能检测技术建筑构件空气声隔声性能检测技术、楼板撞击声隔声性能检测技术:建筑声学检测中遇到的疑难问题、解决方案及实际案例介绍。现场提供声学检测仪器讲解和实际操作。
建筑隔声检测的主要目的是评估建筑物的隔声性能,以确保建筑物内外的环境舒适度和满足相关声学标准的要求。建筑隔声检测的方法主要包括实验室测试和现场测试两种。
实验室测试是在实验室内进行的,通过使用专业的声学仪器和设备,模拟不同频率和幅值的噪声信号,测试建筑材料的隔音性能和建筑结构的隔声性能。实验室测试具有较好的控制性和可重复性,可以针对不同的建筑材料和结构进行系统的测试和比较。
现场测试是在建筑物现场进行的测试,包括对建筑物整体或局部进行声学测试,以及对外界噪声进行测量。在现场测试中,可以使用便携式声学仪器或固定安装的声学监测系统,对建筑物内部的噪声水平、外部环境噪声水平和建筑物的隔声性能进行测量。
总之,建筑隔声检测的主要目的是通过测试建筑材料的隔音性能和建筑结构的隔声性能,评估建筑物的隔声性能,以确保建筑物内外的环境舒适度和满足相关声学标准的要求。建筑隔声检测的方法主要包括实验室测试和现场测试两种,需要根据国家相关标准和规范的要求,采用不同的仪器和设备进行测量,并对测试数据进行分析和处理。 隔声检测可以帮助确定建筑物或设备的隔音性能是否符合品质标准。
为什么要决定声功率水平?
了解装置的声功率水平非常有用。它允许我们客观地比较不同装置的声音输出,而不需要知道它们的测试环境或测量的距离。因此,声功率级非常适合用于指定装置的噪音发射限值,以及验证是否符合限值。由于声功率级与声音环境和测量位置无关,因此我们也可以计算在已知的声音环境中,从装置到特定位置的声压级。例如,声学顾问可能会使用机器的声功率水平来计算在附近住所所产生的声压水平,如果要安装在特定位置,则该机器将在附近住所产生的声压水平。然后,顾问可以确定居所产生的噪音是否符合有关规例,或是否应设计或选择不同、更安静的机械设备。 隔声检测可以通过测量声音传播的能力来评估隔音性能。绿色建筑隔声检测系统仪器
隔声检测可以帮助确定建筑物或设备的隔音性能是否符合可用性标准。汕头房间之间空气声隔声检测系统
声学超构表面是由声学功能基元按照特定序列构成的超薄平面结构,由于其对声波的灵活调控能力,在声场调控、噪声控制等领域具有重要的应用前景。常规声学超构表面通常被认为是无损系统,通过调节功能基元的等效折射率实部来实现声场操控。值得注意的是,声波系统有别于电磁波系统,由于边界层的存在,声学系统中的损耗效应是自然存在的,当功能基元处于亚波长尺度时,基元中的损耗效应不可忽略,并可能严重破坏器件功能。为了减少损耗对声学超构表面功能的影响,通常做法是通过设计尺寸较大的功能基元来尽可能规避损耗效应,但这也成为限制声学器件进一步微型化的技术瓶颈。汕头房间之间空气声隔声检测系统