企业商机
局放基本参数
  • 品牌
  • 方德瑞能
  • 型号
  • FDRN-TA
  • 结构型式
  • 组合式
  • 加工定制
  • 产地
  • 江苏
局放企业商机

电缆局部放电在线监测系统适用于10KV 及以上电压等级的电缆局部放电在线监测。系统主要特点:(1)监测系统采用开合式传感器,结构紧凑,拆卸安装方便,不需要停电,可以很方便的对重点站、重点设备、异常设备进行长期监测。2)采用高性能FPGA处理器,实现100Msp、s可连续采样50个工频周期以上的数据。12Bit分辨率的高速采样、存储。(3)带通滤波技术与噪声识别及剔除算法联合运用,可有效识别局放信号。(4)基于脉冲电流法( IEC60270标准)的局部放电监测技术,可检测10pC以上局放信号。近年来随着配网自动化与配电物联网的发展,电网公司对在线运行的电网设备进行状态监测,而局放主设备运行状态的较主要信息。及时有效的对开关柜的局放监测,可以避免事故的发生,减小损失。局放测试需要保持测试仪器干净、整洁。青岛开关柜局放哪里有

局部放电及局部放电测量可检测的缺陷种类在电气设备的绝缘系统中,各部位的电场强度往往是不相等的,当局部区域的电场强度达到电介质的击穿场强时,该区域就会出现放电,但这种放电并没有贯穿施加电压的两导体之间,即整个绝缘系统并没有击穿,仍然 保持绝缘性能,这种现象称为局部放电。发生在绝缘体内的称为内部局部放电;发生在绝缘体表面的称为表面局部放电;发生在导体表面而周围都是气体的,可称之为电晕放电。局部放电会逐渐腐蚀、损坏绝缘材料,使放电区域不断扩大,之后导致整个绝缘体击穿。故必须把局部放电限制在一定水平之下。高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但出厂时要做局 部放电试验,而且在投入运行之后还要经常进行测量。杭州局放检测厂家局放测试可以提高设备的可靠性。

超声波局放工作原理是什么?南京方德瑞能电力有限公司超声波(AE)局放监测装置工作原理。超声波检测技术具有抗电磁干扰能力强、缺陷定位准确等特点,广泛应用于开关柜的日常巡检工作中,对介质类型比较敏感,适合检测空气介质放电,比较适合检测套管、终端、绝缘子的表面放电。局部放电前,放电点周围的电场应力、介质应力、粒子力处于相对平衡状态。局部放电是一种快速的电荷释放或迁移过程,导致放电点周围的电场应力、机械应力与粒子力失去平衡状态而产生振荡变化过程;机械应力与粒子力的快速振荡,导致放电点周围介质振动,从而产生声波信号,通过压电转换传感器达到测量目的。

在气隙发生放电时, 气隙中的气体产生游离, 使中性分子分离为带电的质点,在外加电场作用下,正离子沿电场方向移动,电子 (或负离子 )沿相反方向移动,于是这些空间电荷建立了与外施电场方向相反的电场 (如图 1.2(a)所示),这时气隙内的实际场强为EC=E外-E内。即气隙上的电场强度下降了 E内,或者说气隙上的电压降低了ΔUc。于是气隙中的实际场强低于气体击穿场强 ECB,气隙中放电暂停。在气隙中发生这样一次放电过程的时间很短, 约为 10-8 数量级,在油隙中发生这样一次放电过程的时间比较长,可达 10-6 数量级。局放测试需要有一定的经验和专业知识。

高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。这项技术要求测试人员熟练使用示波器、频谱仪、滤波器等电子设备,并具备高频电子信号分析判断能力。高压电缆局放测试是目前国内比较新的技术应用课题,国内只有北京供电局进行过类似尝试,在这一技术领域走在了国内前列。局放诊断系统侧重于由软件实现对信号的分析处理,具备频谱分析功能,在频谱图上可连续自由选择滤波器中心频率及带宽,屏蔽干扰信号的影响,通过调节触发电平的大小在一定程度上可排除干扰因素。局放测试需要及时反馈测试结果和测试进展。杭州局放检测厂家

局放测试需要进行多次测试和对比。青岛开关柜局放哪里有

局部放电,是绝缘介质中的一种电气放电,这种放电只限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,对电力设备进行局部放电测试是电力设备制造和运行中的一项重要预防性试验。青岛开关柜局放哪里有

与局放相关的文章
与局放相关的产品
与局放相关的问题
与局放相关的热门
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责