DLC薄膜处于热力学非平衡状态,其原子排布呈现出近程有序、远程无序的特点。近程有序主要表现为C-C原子之间的sp3和sp2杂化键的结构。第一种模型是Beeman等人提出的,他们构造了三种具有不同sp3和sp2杂化碳原子含量的非晶碳薄膜模型。此模型具备两个典型特征:其一,除了sp2杂化结构模型外,所有模型对应于相对各向同性的无序混乱网络结构,而且没有内部悬键;其二,所有模型都做了弛豫处理,目的是使由偏离结晶态的键长、键角所引起的应变能降到比较低。第二种模型是完全无规网络模型,由Phillips等人提出并完善。该模型的基本观点是,在非晶态随机共价网络当中,当原子的平均数与原子的机械自由度相等时,该结构被完全。增加配位数,则可以生成更多的共价键而降低体系能力,可以稳定固态网络结构,但键的拉伸和键角的畸形会造成更多的应变能。新型的DLC(类金刚石碳)涂层材料——金刚烷化合物。昆山塑胶模DLC
类金刚石膜的结构,综述了类金刚石膜的传统制备方法以及其制备方法的基本原理和优缺点,同时介绍了几种近年发展起来的新兴制备方法,与传统制备方法相比,它更能提高膜的沉积速率和质量.总结了类金刚石膜在机械、电子、光学、医学、航空等领域的应用状况.同时指出,随着DLC技术上的成熟,其必将在更多领域发挥越来越大的作用.上海英屹涂层技术有限公司引进美国PE-CVD设备技术制备的类金刚石DLC膜层沉积速率快膜厚可达60um膜层硬度高膜层摩擦系数低小于结合力好耐腐蚀性能好优异的耐磨性膜层具有自润滑性的优点。可以解决PVD涂层镀不到的工件内孔的问题。公司涂层已经应用于航空机械模具电子医疗汽车发动机部件等领域。上海铣刀DLC技术不同工艺下的DCL薄膜形貌不一样。
采用磁控溅射的方法,利用氩气和甲烷为气源,在中国较早汽车股份有限公司自主研发的发动机配气机构的挺柱上制备类金刚石(DLC)薄膜。利用摩擦磨损试验机和发动机配气机构试验台架,研究了DLC涂层挺柱的摩擦学行为及其对发动机节能的影响.试验结果表明,在边界润滑条件下,DLC涂层挺柱的摩擦因数比原零件降低67%,抗磨损性能大幅度提高;在实际使用工况下,配气机构的摩擦损失降低6%,DLC涂层零件可以降低发动机摩擦损失,适用于汽车低碳技术路线。上海英屹涂层技术有限公司引进美国PE-CVD设备技术制备的类金刚石DLC膜层沉积速率快膜厚可达60um膜层硬度高膜层摩擦系数低小于结合力好耐腐蚀性能好优异的耐磨性膜层具有自润滑性的优点。可以解决PVD涂层镀不到的工件内孔的问题。公司涂层已经应用于航空机械模具电子医疗汽车发动机部件等领域。
随着技术及航空航天技术的发展,红外技术越来越受到人们的重视,在及航天领域有着举足轻重的作用。红外光学元件的工作环境往往非常恶劣,如空-空导弹、超音速飞机等装备光电系统的红外窗口,需要承受灰尘、高温、高压、雨淋、冰雹撞击、热冲击等严峻考验,因此对红外窗口材料的性能要求越来越苛刻,既要求材料在工作波段具有优良的光学性能,还要求材料具有优良的力学、耐磨损、耐高温、耐腐蚀等性能。常作为红外窗口的材料有锗(Ge)、硫化锌(ZnS)、硒化锌(ZnSe)、砷化镓(GaAs)、氟化镁(MgF2)、蓝宝石(sapphire)、尖晶石等,但这些材料在应用中都存在着一些问题,例如,Ge在高温时透过率下降;GaAs制备成本高且难制成大尺寸窗口;ZnS红外透过率较低,耐湿性差;ZnSe虽然红外透过率较高,但强度和耐腐蚀性差,等等,很难找到一种材料既有较高的红外透过率,又有很好的综合性能抵抗恶劣的环境且制备成本低。于是人们考虑在材料表面镀上具有保护性能的红外增透膜,而DLC膜恰恰顺应了时代的需求。类金刚石薄膜(DLC)的制备方法及应用。
20世纪70年代早期,类金刚石(DLC)涂层才见诸报道。工业上应用这种涂层起源于汽车部件,如高压柴油喷射系统和动力传动部件。当今,具有特殊优势的各种DLC涂层已在一些领域得到应用。DLC涂层通常由sp³与sp²键的比值和氢含量来分类。当碳元素通过sp³键结合,就会形成金刚石;通过sp²键结合,就会形成石墨。当sp³与sp²键的比值增大时,涂层的硬度通常会增加。可在DLC涂层内加入钨(W-C∶H)之类的金属(此处C为碳,H为氢);还可以加入其他元素如硅(Si-DLC)来改变涂层的摩擦系数或抗温性能。一种已用于切削刀具的复合涂层为高硬度的氮化物涂层(如TiAlN)加上较软的、具有润滑功能的顶层涂层(如W-C∶H)。因为排屑的改善,这种复合涂层在攻丝和钻削应用中显示出优异的效果。本文将重点讨论一种被称作四面体非晶碳(ta-C)的DLC涂层。激光Roman光谱仪研究了DLC的结构组成。常州塑胶模DLC涂层厂
DLC涂层是在电离和分解的碳或烃类物质以通常为10-300eV的能量降落在基底表面时形成的。昆山塑胶模DLC
Ta-C涂层是一种无氢碳元素涂层,其sp³与sp²键的比值较高。与其他DLC涂层相比,ta-C膜层具有更高的硬度和抗温性能,并可降低摩擦系数。该涂层应用在汽车工业的挺杆(气门顶筒),并一直应用至今。Ta-C涂层应用于诸如汽车顶杆零件的目的之一是为了减小摩擦,其带来的效果是改善了发动机效率、更少的燃油消耗和更低的CO2排放。对更佳燃油经济性和更少污染的推动,已将ta-C涂层应用在切削刀具和成形工具上。增大汽车行驶里程数的措施之一是降低汽车自身重量。除了采用超度合金钢,在车身和发动机上采用铝合金已在过去几年以来日益增长。在汽车和航空航天业,塑料(包括碳纤维增强塑料CFRP)的应用也在日益增长。在切削这些材料时,刀具的磨损机理完全不同于切削合金钢。切削这些材料的主要挑战之一在于保持切削刃锋利和减小积屑瘤。因为切削这些材料的刀具刃口半径很小,需要刀具涂层厚度也尽可能小。所有这些挑战可通过刀具涂覆性能优异的ta-C涂层并于切削非铁金属和塑料来应对。 昆山塑胶模DLC