电驱传动系统的特点:电驱传动系统的功率大:内燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)内燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极大地提高了线路的通过能力和输送能力。电驱传动系统的效率高:由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比内燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而内燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。全系列正向设计8立方 地下铲运车传动系统
电驱传动系统的控制目的:从广义上讲,电驱传动控制的目的就是要使生产设备、生产线、车间乃至整个工广都实现自动化。从狭义上讲,则指控制电驱传动生产机械,实现生产产品数量的增加(效率)、质量的提高(精度)、生产成本的降低、工人劳动条件的改善以及能量的合理利用等。电驱传动系统的机械特性:反抗转矩:又称摩擦性转矩,其特点如下:转矩大小恒定不变;作用方向始终与速度n的方向相反,当n的方向发生变化时,它的作用方向也随之发生变化,恒与运动方向相反,即总是阻碍运动的。400KW 地铁调车传动系统规格传动系统包括变速箱、传动轴、减速器和半轴等重要部件。
动力换挡变速器的设计原则:匹配发动机输出功率范围;力求传动路线短,布置合理,结构紧凑;变速范围大,可选速比多;操纵方式易实现智能化控制。动力换挡变速器的设计步骤:第1,根据挡位数和各挡传动比,草拟变速箱的传动方案;第二,确定变速箱的主要参数,包括中心距A ,齿轮模数m,齿宽b ,斜齿轮螺旋角风等;第三,根据变速箱的传动比选配齿轮,确定各挡齿轮的齿数;第四,进行变速箱主要零部件的强度和寿命计算,包括齿轮.轴.轴承、啮合套.换挡离合器和制动器的计算;第五,进行变速箱整体结构设计,绘制总装配图;第六,进行变速箱各零部件结构设计,绘制零件图。
对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。传动系统具有以下主要功能:减速或增速,降低或提高动力机械的转速,以满足系统实施工作的需要;变速,当使用动力机械进行变速不经济、不可能或不能满足要求时,通过传动系统实现变速有级或无级,以满足执行系统的多种速度要求;改变运动规律或者运动形式,将动力发动机输出的匀速连续旋转运动转化为按照一定规律变化的旋转或者非旋转运动。地铁传动系统采用凸轮调阻或斩波调阻的牵引控制方式,牵引电机为直流电机。
交流传动系统的组成:地铁车辆与铁路机车在结H、系统集成:机车是完整的牵引系统:与后顶连接的载客(货)车厢相对自主;而地铁车辆则是编列成组,虽然分为动车和拖车两部分,但都是旅客车厢,动力系统均被分散安装于各车箱的地板下(动力分散)。交流传动系统是以调压调频WVF (Variable Voltage Variable Frequency )逆变器为主要的电传动系统。主要由高速断路器、滤波电抗器、VVF逆变器和异步电动机等装置构成。地铁车辆交流传动系统的组成因生产厂家的不同及用户要求的不同而不相同,这里以六节编组的四动两拖(Tc+M+M+M+M+TC)地铁车辆为例,简要探讨交流传动系统的组成。地铁车辆交流传动系统的组成因生产厂家的不同及用户要求的不同而不相同。重庆480KW 地铁调车传动系统
传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。全系列正向设计8立方 地下铲运车传动系统
传动系统的组成:变速机构:1. 手动变速机构:一般称为「手排变速箱」。以手动操作的方式进行换档。2. 自动变速机构:一般称为「自排变速箱」。利用油压的作动去改变档位。差速器:当车辆在转向时,左、右二边的轮子会产生不同的转速,因此左、右二边的传动轴也会有不同的转速,于是利用差速器来解决左、右二边转速不同的问题。传动轴:将经过变速系统传递出来的动力,传递至差速器进而产生驱动力道的机构。在具备了基本的传动系统组件之后,汽车工程师会依据使用目的的需要,将传动系统设计为二轮传动(2WD)或四轮传动(4WD)的型式。全系列正向设计8立方 地下铲运车传动系统