辅助驾驶,在目前的L2/L3级高级辅助驾驶中,激光雷达可覆盖前向视场(水平视场角覆盖60°到120°)以实现自动跟车或者高速自适应巡航等功能。通过发射信号和反射信号的对比,构建出点云图,从而实现诸如目标距离、方位、速度、姿态、形状等信息的探测和识别。除了传统的障碍物检测以外,激光雷达还可以应用于车道线检测。优点在于测距远、精度高,获取信息丰富,抗源干扰能力强。自动驾驶,未来,L4/L5级无人驾驶应用的实现,有赖于激光雷达提供的感知信息。激光雷达是一种可以扫描周围环境并生成三维图像的传感器。它可以被用于识别障碍物、构建地图和定位车辆等应用场景。该级别应用需要面对复杂多变的行驶环境,对激光雷达性能水平要求较高,在要求360°水平扫描范围的同时,对于低反射率物体的较远测距能力需要达到200m,且需要更高的线数以及更密的点云分辨率;同时为了减少噪点还需要激光雷达具有抵抗同环境中其他激光雷达干扰的能力。激光雷达在管道检测中用于发现潜在的泄漏和损坏。河南AMR激光雷达

MEMS:MEMS激光雷达通过“振动”调整激光反射角度,实现扫描,激光发射器固定不动,但很考验接收器的能力,而且寿命同样是行业内的重大挑战。支撑振镜的悬臂梁角度有限,覆盖面很小,所以需要多个雷达进行共同拼接才能实现大视角覆盖,这就会在每个激光雷达扫描的边缘出现不均匀的畸变与重叠,不利于算法处理。另外,悬臂梁很细,机械寿命也有待进一步提升。振镜+转镜:在转镜的基础上加入振镜,转镜负责横向,振镜负责纵向,满足更宽泛的扫射角度,频率更高价格相比前两者更贵,但同样面临寿命问题。福建激光雷达服务机器人借助激光雷达规划路径,实现室内外自主移动。

多传感器融合,在环境监测传感器中,超声波雷达主要用于倒车雷达以及自动泊车中的近距离障碍监测,摄像头、毫米波雷达和激光雷达则普遍应用于各项 ADAS 功能中。四类传感器的探测距离、分辨率、角分辨率等探测参数各异,对应于物体探测能力、识别分类能力、三维建模、抗恶劣天气等特性优劣势分明。各种传感器能形成良好的优势互补,融合传感器的方案已成为主流的选择。激光雷达LiDAR的全称为Light Detection and Ranging激光探测和测距,又称光学雷达。
国外厂商在激光器和探测器行业耕耘较久,产品的成熟度和可靠性上有更多的实践经验和优势,客户群体也更为普遍。国内厂商近些年发展迅速,产品性能已经基本接近国外供应链水平,并已经有通过车规认证(AEC-Q102)的国产激光器和探测器出现,元器件的车规化是车规级激光雷达实现的基础,国内厂商能够满足这一需求。相比国外厂商,国内厂商在产品的定制化上有较大的灵活性,价格也有一定优势。光学部件方面,激光雷达公司一般为自主研发设计,然后选择行业内的加工公司完成生产和加工工序。光学部件国内厂商的技术水平已经完全达到或超越国外供应链的水准,且有明显的成本优势,已经可以完全替代国外供应链和满足产品加工的需求。览沃 Mid - 360 探测距离 可为10cm,小盲区配合小巧体积,轻松实现无盲区覆盖。

而如较新的 Livox Horizon 激光雷达,也包含了多回波信息及噪点信息,格式如下:每个标记信息由1字节组成:该字节中 bit7 和 bit6 为头一组,bit5 和 bit4 为第二组,bit3 和 bit2 为第三组,bit1 和 bit0 为第四组。第二组表示的是该采样点的回波次序。由于 Livox Horizon 采用同轴光路,即使外部无被测物体,其内部的光学系统也会产生一个回波,该回波记为第 0 个回波。随后,若激光出射方向存在可被探测的物体,则较先返回系统的激光回波记为第 1 个回波,随后为第 2 个回波,以此类推。如果被探测物体距离过近(例如 1.5m),第 1 个回波将会融合到第 0 个回波里,该回波记为第 0 个回波。抗室外强光,Mid - 360 室内昏暗与室外强光下性能无缝衔接。livox激光雷达规格
通过分析激光雷达数据,研究人员能够精确评估环境变化。河南AMR激光雷达
NDT 算法的基本思想是先根据参考数据(reference scan)来构建多维变量的正态分布,如果变换参数能使得两幅激光数据匹配的很好,那么变换点在参考系中的概率密度将会很大。然后利用优化的方法求出使得概率密度之和较大的变换参数,此时两幅激光点云数据将匹配的较好。由此得到位资变换关系。局部特征提取通常包括关键点检测和局部特征描述两个步骤,其构成了三维模型重建与目标识别的基础和关键。在二维图像领域,基于局部特征的算法已在过去十多年间取得了大量成果并在图像检索、目标识别、全景拼接、无人系统导航、图像数据挖掘等领域得到了成功应用。类似的,点云局部特征提取在近年来亦取得了部分进展河南AMR激光雷达