核酸内切酶VIII(EndonucleaseVIII)和核酸内切酶III(EndonucleaseIII)都是DNA修复酶,但它们之间存在一些关键的区别:1.**活性类型**:-**核酸内切酶VIII**:具有N-糖基化酶(N-glycosylase)活性和AP裂解酶(AP-lyase)活性。N-糖基化酶活性可以释放受损的嘧啶碱基,如胸腺嘧啶乙二醇和尿嘧啶乙二醇,产生一个脱嘌呤(Apurinic,AP)位点;AP裂解酶活性可以切割AP位点的3'和5'端,产生一个具有3'和5'磷酸的碱基缺口(Gap)。-**核酸内切酶III**:主要具有β裂解酶(β-lyase)活性,能够切割DNA磷二酯骨架在AP位点处,但不具备δ裂解酶(δ-lyase)活性。2.**识别和切除的受损碱基**:-**核酸内切酶VIII**:可以识别并切除包括尿素、5,6-二羟基胸腺嘧啶、胸腺嘧啶乙二醇、5-羟基-5-甲内酰脲、尿嘧啶乙二醇、6-羟基-5,6-二氢胸腺嘧啶和甲基羟丙二酰脲在内的多种受损碱基。-**核酸内切酶III**:主要识别和切除氧化性损伤的嘌呤碱基,如8-氧鸟嘌呤。3.**裂解酶活性**:-**核酸内切酶VIII**:具有β和δ裂解酶活性,而**核酸内切酶III**具有β裂解酶活性。这些区别决定了它们在DNA损伤修复中的作用和应用范围。
ExoIII(ExonucleaseIII)和Lambda核酸外切酶(λExonuclease)在DNA末端处理上的主要不同点如下:1.**作用方向**:-**ExoIII**:具有3'→5'外切脱氧核糖核酸酶活性,它从DNA链的3'-OH末端逐步切去单核苷酸。-**Lambda核酸外切酶**:是一种5'→3'核酸外切酶,能选择性地沿5'→3'方向消化5'端磷酸化的双链DNA。2.**底物特异性**:-**ExoIII**:适底物是平末端或5'末端突出的DNA,但也可以作用于双链DNA切刻位点产生单链缺口。由于对单链DNA无活性,因此难以切割3'突出末端。-**Lambda核酸外切酶**:适底物是5'磷酸化的双链DNA,对单链DNA和5'端未磷酸化修饰的DNA的酶切活性较低,不能从DNA的切刻或缺口处起始消化。3.**活性差异**:-**ExoIII**:对具有3'-突出末端(至少有4个碱基,且具有3'-末端C残基)的DNA、单链DNA、硫代磷酸酯连接的核苷酸无活性。-**Lambda核酸外切酶**:对5'-OH端的切割速度比5'-P端慢约20倍;对单链DNA的酶切速度比双链DNA慢约100倍。4.**应用场景**:-**ExoIII**:可以用于生产特定方向的单链DNA,将线性化DNA设计成为一端为不切割末端(3'突出端),另一端则设计为易切割末端(平端或5'突出端)。
核酸内切酶VIII(EndonucleaseVIII)是一种来自大肠杆菌的DNA损伤修复酶,具有以下特点:1.**双功能活性**:核酸内切酶VIII具有N-糖基化酶(N-glycosylase)活性和AP裂解酶(AP-lyase)活性。2.**释放受损嘧啶碱基**:N-糖基化酶活性可以释放双链DNA上受损的嘧啶碱基,如胸腺嘧啶乙二醇和尿嘧啶乙二醇,生成一个脱嘌呤(apurinic,AP)位点。3.**切割AP位点**:AP裂解酶活性可以切割AP位点的3'和5'端,产生一个具有3'和5'磷酸的碱基缺口(Gap)。4.**识别并切除受损碱基**:核酸内切酶VIII可以识别并切除多种受损碱基,包括尿素、5,6-二羟基胸腺嘧啶、胸腺嘧啶乙二醇、5-羟基-5-甲内酰脲、尿嘧啶乙二醇、6-羟基-5,6-二氢胸腺嘧啶和甲基羟丙二酰脲。5.**与EndonucleaseIII的区别**:虽然核酸内切酶VIII与核酸内切酶III相似,但核酸内切酶VIII具有β和δ裂解酶活性,而核酸内切酶III具有β裂解酶活性。6.**应用领域**:核酸内切酶VIII可以应用于单细胞凝胶电泳、NGS建库中DNA损伤修复、酶法合成DNA中释放DNA链、碱洗脱,搭配尿嘧啶-DNA糖基化酶(UDG)进行含U片段的克隆等。
qPCR(定量聚合酶链式反应)检测结果的准确性可能受到多种因素的影响,以下是一些关键因素:1.**引物和探针设计**:引物和探针的设计质量对qPCR的成功至关重要。不合适的引物设计可能导致低特异性或效率低的PCR反应。引物的选择应考虑引物的长度、Tm值(解离温度)和GC含量,以确保其适用于特定的核酸模板。2.**模板质量和纯度**:模板的质量和纯度直接影响qPCR的结果。污染或降解的模板可能导致偏差或虚假阳性结果。使用质量高、纯度高的DNA或RNA样本是确保准确和可靠的qPCR结果的关键。3.**反应条件和缓冲液**:PCR反应条件,包括温度、离子浓度和缓冲液成分,必须严格控制。温度梯度、离子浓度的变化或缓冲液成分的误配可能会影响PCR效率。4.**反应容器和耗材**:反应管、微孔板、封闭膜等反应容器和耗材的质量也会影响qPCR结果。低质量的材料可能导致样本丢失或反应失效。5.**标准曲线和校准**:标准曲线的准备和校准非常重要。不正确的标准曲线可能导致定量结果的不准确性。确保标准曲线中包含适当的对照样品,并使用线性拟合来生成准确的定量数据。6.**环境条件**:实验室温度、湿度和空气质量都可以影响qPCR实验的结果。不稳定的环境条件可能导致实验结果的不稳定性。FnCas12a包含约1300个氨基酸,含有RuvC-like结构域,同时具有DNA和RNA内切酶的活性。
T5核酸外切酶在基因编辑中确实有应用,并且具有一些优势:1.**提高编辑效率**:根据一篇研究文章,T5核酸外切酶可以与CRISPR/Cas系统共表达或融合,以提高基因编辑的效率。这种共表达或融合可以增加indel(插入和缺失)频率,尽管增加的幅度可能不大。2.**增强基因编辑效果**:在另一项研究中,通过使用螺旋-螺旋二聚体肽(coiled-coilpeptides)将T5核酸外切酶招募到Cas9或Cas12a蛋白上,可以提高基因编辑的效率,这种方法被称为CCExo(CRISPR-Coiled-coil-Exonuclease)。这种招募方式优于共表达和直接融合,其中强的亲和力CC对显示出高的突变频率和删除长度。3.**应用于多种细胞类型**:CCExo系统在多种细胞系和原代细胞中都能有效地提高基因失活效率,并且在慢性髓性白血病(CML)患者的原代细胞以及异种移植动物模型中展示了其应用潜力,这表明CCExo方法可能成为CML和其他遗传性疾病的潜在选择。T5核酸外切酶与CRISPR核酸酶蛋白进行融合,并引入了核定位信号(NLS)序列以构建表达载体,用于基因编辑。综上所述,T5核酸外切酶在基因编辑中的应用可以增强编辑效率和效果,尤其是在与CRISPR/Cas系统结合使用时。CRISPR-Cas12a(以前称为Cpf1)是一种类II型V型内切酶,偏好富含胸腺嘧啶的原间隔短回文重复序列邻近基序。Recombinant Human LAG3/CD223(His Tag)
Ultra-Long Master Mix 是一种用于长片段PCR扩增的预混液,它含有经过特殊修饰的热稳定Taq DNA聚合酶。Recombinant Human NKG2C/CD159c Protein,His-Avi Tag
CUT&RUN和ChIC是两种用于研究蛋白质-DNA相互作用的技术,它们有一些关键的区别:1.**技术原理**:-**ChIC(ChromatinImmunocleavage)**:ChIC技术利用抗体将感兴趣的蛋白与ProteinA-MNase相结合来进行DNA切割。ChIC的优势在于使用TF特异性抗体系住MNase,并只在结合位点裂解。-**CUT&RUN(CleavageUnderTargetsandReleaseUsingNuclease)**:CUT&RUN技术则是在核的轻微MNase处理后释放单核小体和TF-DNA复合物,留下寡核小体。CUT&RUN通过在冰上进行简短的消化反应,在TF结合的MNase扩散到周边的基因组和裂解可接近的染色质之前在上清中恢复TF-DNA复合物。2.**操作步骤和简便性**:-**ChIC**:ChIC可能需要甲醛固定操作,这可能重新引入了ChIP-seq的一些问题,如交联导致的DNA和蛋白质的化学修饰。-**CUT&RUN**:CUT&RUN简化了操作步骤,使用磁珠固定细胞核,适用于新鲜和冷冻组织样本,缩短了生成DNA测序文库的时间(1-2天)。3.**背景信号和信噪比**:-**ChIC**:ChIC产生的背景信号可能较高,因为它可能涉及到非特异性的DNA切割。
耐高盐全能核酸酶(SaltActiveUltraNuclease)是一种重组非特异性核酸内切酶,具有以下特点和应用:1.**来源与表达**:耐高盐全能核酸酶来源于海洋微生物,通过基因工程改造在大肠杆菌(_Escherichiacoli_)中表达纯化。2.**活性条件**:在0.5MNaCl条件下具有比较好活性,这使得它在高盐环境下也能保持高效。3.**应用领域**:-**病毒纯化、疫苗生产**:作为宿主残留核酸去除试剂,将宿主残留核酸降至皮克(pg)级别,提高生物制品功效和安全性。-**蛋白和多糖类制药工业**:用于去除核酸污染,降低细胞上清和细胞裂解液的粘度,提高蛋白纯化效率及功能研究。-*...