温度仪表如何与其他仪表配合使用:首先,温度仪表与压力表的配合使用是非常常见的。在许多工业过程中,温度和压力往往是密切相关的。例如,在化工生产中,温度和压力的变化会直接影响反应的速率和产物的质量。因此,通过将温度仪表和压力表安装在同一设备上,可以实时监测温度和压力的变化,并及时采取相应的控制措施。此外,还可以通过将温度和压力的测量结果进行比...
查看详细 >>温度仪表选用总则:1炸掉危险区内应用的电子式仪表应取得国家授权防爆认证机构颁发的《产品防爆合格证》。2仪表的防护等级应符合现行国家标准《外壳防护等级》(GB4208)的有关规定,现场安装的电子式仪表不低于IP65的防护等级。在现场安装的气动仪表及就地仪表,防护等级不应低于IP55;在仪表井、阀门井及水池内安装的仪表,防护等级应为IP68。...
查看详细 >>液体涡轮流量计是一种精密流量测量仪表,与相应的流量积算仪表配套可用于测量液体的流量和总量。液体涡轮流量计普遍用于石油、化工、冶金、科研等领域的计量、控制系统。配备有卫生接头的液体涡轮流量计可以应用于制药行业。一体化液体涡轮流量计结构为防爆设计,可以显示流量总量,瞬时流量和流量满度百分比。电池采用长效锂电池,单功能积算表电池使用寿命可达5年...
查看详细 >>雷达物位计是基于距离物料表面的距离与脉冲的时间行程成正比的工作原理来测量物位的仪表,天线系统发出高频脉冲信号,当遇到物料表面时,部分脉冲被反射回来,天线接收反射回来的微波脉冲并将其传输给电子线路,微处理器对此信号进行处理,识别出微波脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,距离物料表面的距离与脉冲的时间行程成正比,并将...
查看详细 >>选择高质量的仪表是提高测量精度的基础。在购买仪表时,应选择具有较高准确度和分辨力的产品。其次,定期的校准和校验是确保仪表准确度的关键。校准应由专业人员进行,并按照制造商的建议进行。此外,仪表的使用环境也需要注意。避免将仪表暴露在极端温度或湿度条件下,以减少环境因素对测量精度的影响。温度仪表的测量精度是指仪表在测量温度时所能达到的准确程度。...
查看详细 >>温度控制仪表就是通过热电阻或者热电偶控制被测对象进行控制的的仪器,其常见故障主要有以下几点:安装位置不当,使介质无法与测量元件充分的热交换,造成指示偏低;测温点保温不良,造成局部散热快,造成测温处偏低于系统温度;接线松动,接触不良造成指示不准。造成热电阻偏高,热电偶偏低;短路故障。造成热电阻偏低或较小,热电偶偏低或故障;断路(开路)故障。...
查看详细 >>选择温度仪表的关键因素:我们需要考虑温度仪表的易用性和便携性。易用性是指温度仪表的操作是否简单方便,是否具有友好的用户界面。便携性是指温度仪表是否便于携带和移动。对于一些需要频繁使用或需要在不同地点使用的应用,我们需要选择易用性和便携性较高的温度仪表。综上所述,选择适合自己需求的温度仪表需要考虑多个因素,包括测量范围、精确度、响应时间、耐...
查看详细 >>压力表是一种常见的测量仪器,普遍应用于各个行业和领域。它的使用寿命和更换周期是关乎其准确性和可靠性的重要问题。这里将探讨压力表的使用寿命和更换周期,并提供一些建议。首先,我们需要了解压力表的基本原理和结构。压力表是通过测量介质对其施加的压力来显示压力数值的仪器。它通常由压力传感器、指针、刻度盘和外壳等部分组成。压力传感器是压力表的中心部件...
查看详细 >>在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永远磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。通过测量脉冲电流与扭转波的时间差可以精确地确定浮...
查看详细 >>由于雷达物位计具有测量准确、性能稳定、可靠性高、维护简便、适用范围广等优点,其应用范围非常普遍,涵盖了电力、钢铁、冶金、水泥、石油化工、造纸、食品等行业,适用于粉尘、温度、压力变化大,有惰性气体及蒸汽存在的场合。但是由于不同的雷达物位计其应用的原理不同,其解决的应用工况差异也很大。脉冲雷达物位计在大部分应用场合一般都能应用,通常用于圆柱形...
查看详细 >>雷达液位计作为计量罐测量的一种先进技术,雷达液位计使用射频波测量液位,能够提供高精度的测量结果。通过精确计算液体的体积,可以确保计量罐中的液体在准确范围内。雷达液位计可以与监控系统集成,实现远程监测。这使得操作人员可以在远离计量罐的情况下进行实时监测和控制。可以监测液位变化,并及时采取必要的措施。雷达液位计能够抵御环境中的干扰因素,如粉尘...
查看详细 >>雷达物位计是一种采用微波测量技术的非接触式液位测量仪表,脉冲雷达物位计是工业测量中常用的一种。脉冲雷达物位计的工作原理是天线发射极窄的微波脉冲,这个脉冲以光速在空间传播,遇到被测介质表面,其部分能量被反射回来,被同一天线接收。发射脉冲与接收脉冲的时间间隔与天线到被测介质表面的距离成正比。由于电磁波的传播速度极高,发射脉冲与接收脉冲的时间间...
查看详细 >>