目前,在各种健康与疾病模型中都发现,外泌体通过分子信息传递扮演着重要的角色。外泌体还越来越多地被认为是疾病的生物标志物和预后因子,具有重要的临床诊断和治理意义。除此之外,它们还有潜力被用于临床,作为基因和药物递送的载体。健康人和多种疾病的患者会将含有不同RNA和蛋白质成分的外泌体释放到体液循环中,因其特殊性,外泌体可以作为生物标志物来对疾病进行检测。例如,从血液或尿液中分离的外泌体可以用作病症、心脏病的诊断和预后的指标。实际上,用PS亲和法提取的人白血病细胞释放的外泌体。干细胞外泌体tmt

获得囊泡粒径分布的两种方法动态光散射(DLS)和纳米颗粒跟踪分析(NTA)都被广fan应用于外泌体颗粒数目和粒径分布的测量,但两种方法也各有不足。动态光散射法中散射光强度依赖于颗粒质量(体积),混合体系中大囊泡的存在(即使只有很少的量)将严重影响测量结果,因此动态光散射法更适用于单分散体系。而且动态光散射法所得的结果强烈依赖于所应用的数学算法。而采用纳米颗粒跟踪分析仪对不同粒径范围的囊泡进行检测时,为了得到准确的浓度和粒径信息,需要根据所要测量的颗粒粒径范围对仪器分别校准,操作繁琐。受检测灵敏度所限,纳米颗粒跟踪分析仪适用于粒径范围50nm~1μm的颗粒,粒径小于50nm的外泌体无法检测。除此之外,两种方法都依赖光散射和粒子的布朗运动进行分析,难以区分合成的纳米材料、大蛋白质聚合体和生物囊泡。黑龙江外泌体荧光标记各种细胞粘着分子在外泌体膜表面表达,由其决定外泌体被运输往哪一种细胞。

有研究表明外泌体通过唤醒瘤相关信号通路、诱导免疫耐受、重塑细胞外基质、增强瘤细胞侵袭性和调控瘤微环境促进瘤的发生和发展,外泌体在瘤的诊断上有诸多优势:外泌体可保护其中的核酸类物质,防止其迅速降解;外泌体的形成与亲源细胞的状态密切相关;针对外泌体内容物的检测比传统的瘤标志物更具有特异性;外泌体宽泛存在于多种体液样本中,以其为基础的瘤诊断可在病情发展过程中及时监测分子标志物的变化,这种检测更易监控且样本更易收集。
科学家也尝试利用外泌体的压制发病机制功能。例如,类风湿关节炎患者的滑膜成纤维细胞所释放的外泌体,高浓度集聚诱导细胞死亡的TNF-α,可使类风湿关节炎恶化。通过上述介绍可以知道症状细胞来源的外泌体含有与症状进展相关的分子,神经细胞来源的外泌体含有与神经退行性疾病相关的分子,因此,通过压制或去除这些外泌体,有希望压制疾病发生。随着今后的研究发展,外泌体功能逐步清晰,并扩大临床应用,有望将外泌体应用在各种疾病医治上。甚至可尝试利用外泌体将siRNA和抗药剂等运输到目标细胞中。神经细胞来源的外泌体含有与神经退行性疾病相关的分子。

在免疫系统中,淋巴细胞、树突状细胞、巨噬细胞、肥大细胞等均可以产生外泌体。研究表明免疫细胞来源的外泌体能够明显影响机体的免疫调节机制,包括调节抗原呈递、免疫激huo、免疫监督等。不同免疫细胞来源的外泌体功能不同,以树突状细胞(该细胞具有免疫刺激能力,是目前能够激huo初始T细胞的抗原递呈细胞)来源的外泌体为例,其外泌体的免疫刺激作用取决于来源细胞的成熟状态。成熟的树突状细胞外泌体内包含能够直接激huoT细胞的MHCclassⅠ和MHCclassⅡ,共刺激分子如CD40、CD8、CD86和热激蛋白,这些分子使树突状细胞来源的外泌体具有抗原呈递、调节免疫响应的生物功能。高浓度集聚诱导细胞死亡的TNF-α,可使类风湿关节炎恶化。山东外泌体融合实验
外泌体在组织修复领域均起着重要的作用,并且可以作为很好靶向给药系统。干细胞外泌体tmt
间充质干细胞存在于骨髓、脂肪、脐血、牙髓、滑膜液等部位,是一种能够自我更新的多功能干细胞。间充质干细胞通过旁分泌的形式发挥其生理功能,而外泌体作为一种细胞间传递信息的介质,在间充质干细胞的功能行使中发挥了重要作用。研究发现间充质干细胞来源的外泌体能够修复组织损伤、抑制中流生长和调节免疫响应,具有zhiliao心肌梗死、自身免疫疾病、阿尔兹海默症等疾病的潜力。另外,也有研究显示间充质干细胞来源的外泌体会促进某些中流生长。干细胞外泌体tmt