研索仪器的竞争力不仅在于硬件设备的先进性,更体现在对测量数据价值的深度挖掘,尤其在 "实验测量 - 仿真分析" 闭环构建方面形成了独特优势。传统测试与仿真往往处于割裂状态,实验数据难以有效支撑仿真模型的验证与修正,导致仿真结果的可信度受限。研索仪器通过技术整合,彻底打破了这一行业痛点。在断裂力学研究领域,研索仪器的 DIC 系统展现出强大的数据分析能力。基于 DIC 技术获取的高分辨率位移场信息,可实现裂尖位置的定位与应力强度因子(SIF)的准确计算,这两项参数是评估结构完整性与寿命预测的指标。应变测量有多种方法,比较常见的是使用应变计测量。新疆全场数字图像相关应变测量装置

针对特殊场景的技术难点,研索仪器推出了一系列专项解决方案。在介观尺度测量领域,µTS 介观尺度原位加载系统填补了纳米压头与宏观加载设备之间的技术空白,通过将 DIC 技术与光学显微镜相结合,可获取 10μm-10mm 尺度下的局部应变场精细数据,为材料微观力学行为研究提供有力工具。面对极端环境测试需求,MML 极端环境微纳米力学测试系统展现出强大的环境适配能力,能够在真空环境下 - 100℃至 1000℃的宽温度范围内稳定工作,实现纳米级力学性能测试,攻克了高温合金、陶瓷等材料在极端条件下的测量难题。湖北VIC-2D数字图像相关应变系统研索仪器光学非接触应变测量系统可结合DIC或干涉技术,实现三维应变场可视化。

在动态与瞬态测量领域,研索仪器的技术优势更为突出。其 VIC-3D 疲劳场与振动测量系统可搭配帧率高达 20 万 fps 的高速摄像机,轻松捕捉瞬态冲击、周期性振动等动态过程中的变形信息,无需复杂布线即可实现动态变形的全场可视化。在汽车碰撞测试中,该系统能记录车身关键部位的应变峰值与变形轨迹;在航空航天领域,可用于机翼动态变形、旋翼高速旋转轨迹的测量分析,为结构可靠性设计提供关键数据。此外,红外 3D 温度场耦合 DIC 系统实现了温度场与应变场的同步测量,3D Micro-DIC 显微测量系统将精度提升至微米级,进一步拓展了测量技术的应用边界。
针对特殊测试场景,研索仪器提供了定制化解决方案。在介观尺度测量领域,µTS 介观尺度原位加载系统填补了纳米压头与宏观加载设备之间的技术空白,通过 DIC 技术与显微镜结合,可获取局部应变场的精细数据;面对极端环境需求,MML 极端环境微纳米力学测试系统能在真空环境下 - 100℃至 1000℃的温度范围内实现纳米级力学测试,攻克了恶劣条件下的测量难题。此外,红外 3D 温度场耦合 DIC 系统、3D Micro-DIC 显微测量系统等特色产品,进一步拓展了测量技术的应用边界。研索仪器光学非接触应变测量系统具有亚微米级位移分辨率,应变测量精度达0.005%。

生物医学:人工关节与组织工程的“光学显微镜”人工髋关节在体运动中,聚乙烯衬垫与金属股骨头间的接触应力导致衬垫磨损,可能引发假体松动。微型DIC系统结合透明关节模拟器,实时观测衬垫表面应变分布与裂纹扩展路径,发现高应变区域与磨损斑高度重合,为材料改性(如添加纳米氧化铝颗粒增强耐磨性)提供了直接证据。在组织工程领域,DIC技术用于监测细胞支架在动态拉伸下的变形行为,揭示机械刺激对干细胞分化的调控机制,推动“机械生物学”从理论走向临床应用。研索仪器科技光学非接触应变测量,高精度捕捉微小应变,数据可靠。新疆光学非接触式测量
光学非接触应变测量认准研索仪器科技(上海)有限公司!新疆全场数字图像相关应变测量装置
在土木工程领域,研索仪器的技术为大型结构安全评估提供了全新手段。在混凝土结构测试中,DIC 系统可精确捕捉裂缝从起裂到贯通的全过程,输出裂缝扩展速率与应变分布数据,为评估混凝土材料的抗裂性能提供直观依据。在桥梁、隧道等大型构筑物的模型试验中,通过对缩尺模型表面的全场监测,可直观呈现结构在荷载作用下的位移场演化,清晰捕捉拱顶效应形成、滑移带发展等关键现象,为实际工程的安全设计提供可靠参考。在矿山工程中,测量系统能够记录采动过程中的岩层变形数据,为顶板塌陷预警、矿柱稳定性评估提供定量依据,助力矿山安全生产。新疆全场数字图像相关应变测量装置