多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

对于两个远距离(相距1-2mm以上)的成像部位,通常采用两个**的路径进行成像;对于相邻区域,通常使用单个物镜的多个光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰,这可以通过事后光源分离或时空复用来解决。事后光源分离法是指分离光束以消除串扰的算法;时空复用法是指同时使用多个激发光束,每个光束的脉冲在时间上被延迟,使不同光束激发的单个荧光信号可以暂时分离。引入的光束越多,可以成像的神经元越多,但多束会导致荧光衰减时间重叠增加,从而限制了分辨信号源的能力;并且复用对电子设备的工作速度要求很高;大量的光束也需要较高的激光功率来维持单束的信噪比,这样容易导致组织损伤。光子显微镜是一种使用可见光或近红外光的显微镜。布鲁克多光子显微镜应用

布鲁克多光子显微镜应用,多光子显微镜

多光子显微镜对成像深度的改善利用红光或红外光激发,光散射小(小粒子的散射与波长的四次方的成反比)。不需要***,能更多收集来自成像截面的散射光子。***不能区分由离焦区域或焦点区发射出的散射光子,多光子在深层成像信噪比好。单光子激发所用的紫外或可见光在光束到达焦平面之前易被样品吸收而衰减,不易对深层激发。多光子荧光成像的特点。深度成像∶与共聚焦相比能更好地对厚散射物质成像。信噪比∶多光子吸收采用的波长是单光子吸收的2倍以上,所以显微试样中的瑞利散射更小,荧光测定的信噪比更高。观察活细胞∶离子测量(i.e.Ca2+),GFP,发育生物学等—减少了光毒性和光漂白,能对细胞长时间观察。布鲁克多光子显微镜应用实现细胞层面观察,多光子显微镜技术助力医学突破。

布鲁克多光子显微镜应用,多光子显微镜

1,光源、光路高度整合通过精密的设计,将飞秒激光器、扫描振镜、PMT、滤光片组,甚至是单光子荧光光路全套整合在一个不大的扫描头(ScanHead)内,无论扫描头如何移动,扫描头内的光路都可以保持稳定不变,从而实现了超稳定、免维护的特点。2,配合多维度、高精度机械控制系统。扫描头直接架设在一个多维运动的机械装置上,可沿任意方向和角度移动扫描头,方便对动物样本进行多方位的扫描观察。而这在常规方案的多光子显微镜上有很大的实现难度,不但需要多个关节组合的光路导向机构,并且在这些关节旋转的时候,都冒着极大的光路偏移的风险,以至于在使用一段时间后都需要对光路进行再次校准,而这样的问题在我司上则完全不会发生。3.一机多能。

随着现代分子生物学技术的快速发展和科学技术的进步,特别是后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,这为在体内研究基因表达、分子间相互作用、细胞增殖、细胞信号转导、诱导分化、细胞凋亡和新生血管生成提供了良好的生物学条件。然而,尽管利用现有的分子生物学方法对基因表达与蛋白质的相互作用进行了深入细致的研究,但仍然无法实现对蛋白质和基因活性的实时动态监测。在细胞的生理过程中,基因尤其是蛋白质的表达、修饰和相互作用往往是可逆的、动态变化的。目前,分子生物学方法无法捕捉到蛋白质和基因的这些变化,但获得这些信息对于研究基因表达与蛋白质的相互作用非常重要。因此,有必要发展一种动态、实时、连续监测蛋白质和基因活性的方法。多光子显微镜,为疾病诊断和药物研发提供强大支持。

布鲁克多光子显微镜应用,多光子显微镜

    2020年,TonmoyChakraborty等人提出了一种加快2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品的缓慢轴向扫描速度限制了体积成像的速度。近年来,通过使用远程聚焦技术或电可调谐透镜(ETL)已经实现了快速轴向扫描;但是,远程聚焦中反射镜的机械驱动会限制轴向扫描速度,ETL会引入球面像差和更高阶像差,从而无法进行高分辨率成像。为了克服这些局限性,该组引入了一种新颖的光学设计,能将横向扫描转换为可用于高分辨率成像的无球差的轴向扫描。该设计有两种实现方式,第一种能够执行离散的轴向扫描,另一种能够进行连续的轴向扫描。具体装置如图3a所示,由两个垂直臂组成,每个臂中都有一个4F望远镜和一个物镜。远程聚焦臂包含一个检流扫描镜(GSM)和一个空气物镜(OBJ1),另一个臂(称为照明臂)由一个水浸物镜(OBJ2)构成。将这两个臂对齐,以使GSM与两个物镜的后焦平面共轭。准直的激光束被偏振分束器反射到远程聚焦臂中,GSM对其进行扫描,进而使得OBJ1产生的激光焦点进行横向扫描。 高速扫描,高分辨率,多光子显微镜助力科研进步。荧光多光子显微镜焦点激发

多光子显微镜,实现无创、无标记的生物组织观测方案。布鲁克多光子显微镜应用

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统需要依赖于远程聚焦、SLM和可调电动透镜。布鲁克多光子显微镜应用

与多光子显微镜相关的问答
信息来源于互联网 本站不为信息真实性负责