硫酸根废水对厌氧的影响:在厌氧环境中,硫酸盐还原菌会将硫酸盐还原为硫化氢,游离的硫化氢会对厌氧细菌中的产甲烷菌造成毒性。根据研究,当废水中游离的硫化氢浓度达到250mg/l时,厌氧颗粒污泥的活性下降约50%。同时,由于水中含有的游离硫化氢也可以被氧化剂氧化,从而表征为COD;所以,在化验数据时,会表现为厌氧出水的COD升高,去除效率下降。当然,厌氧反应中产生的硫化氢也会带来一些问题,例如厌氧装置区域有异味,厌氧系统中气水交界面腐蚀严重和沼气品质降低,这些我们会在后面的文章中单独讲解。判断厌氧污泥的活性时,一定要重视污泥活性测试。辽宁推流式厌氧罐检修
厌氧反应器的结构:污水通过进水进入布水器,与下降管循环来的污泥和水均匀混和后,进入首先一个反应区,即流化床反应室。在这里,大部分COD被降解为沼气,由一级三相分离器收集,并产生气体提升。气体被提升的同时,带动水和污泥作向上运动,经过上升管达到位于反应器顶部的气液分离器,在这里沼气从水和污泥中分离,进入沼气收集管道。水和污泥混和经过同心的下降管直接滑落到反应器底部形成内部循环流。首先一级反应区的出水向上进入深度净化反应室内被深度处理,在那里剩余的可厌氧生物降解的COD被去除,在上层分离区产生的沼气被顶部的二级三相分离器收集,并由集气管输送到顶部旋流式气液分离器,实现沼气分离和收集。同时,厌氧出水经过出水堰流出进入后续工艺单元。海南塞流式厌氧罐重新启动厌氧反应器优点:启动速度快。
厌氧反应器的优点主要有以下几点:(1)容积负荷率高,水力停留时间短。(2)基建投资省,占地面积小。由于厌氧反应器的容积负荷率高,故对于处理相同COD总量的废水,其体积只为普通UASB反应器的30-50%左右,降低了基建投资。同时由于厌氧反应器具有很大的高径比,所以占地面积特别省,非常适用于一些占地面积紧张的厂矿企业采用。(3)节省能耗。由于厌氧反应器是以自身产生的沼气作为提升的动力实现混合液的内循环,不必另设水泵实现强制循环,故可节省能耗。
厌氧反应器厌氧分三个阶段:产氢产乙酸阶段:产氢产乙酸菌能把除乙酸、甲酸、甲醇以外的1阶段产生的中间产物(如丙酸、丁酸等脂肪酸和醇类)转化为乙酸和氢,并有CO2产生。水解阶段:复杂的有机物在厌氧菌胞外酶的作用下,首先被分解为较简单的有机物,继而在产酸菌的作用下经厌氧发酵和氧化转化为乙酸、丙酸、丁酸等脂肪酸和醇类。产甲烷阶段:产甲烷菌将一、二阶段产生的乙酸、氢和CO2等转化为甲烷。厌氧不需要供给氧气,污泥负荷相对较高,能处理较难生物降解的物质,但所需时间长,出水-般需要后续处理才能达到排放标准。厌氧反应器排泥系统必须同时考虑上、中、下不同位置设置排泥设备。
沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。膨胀颗粒污泥床(ExpandedGranularSludgeBlanketReactor,简称EGSB),是第三代厌氧反应器。其构造与UASB反应器有相似之处,可以分为进水配水系统、反应区、三相分离区和出水渠系统。厌氧接触反应器是厌氧反应器的一种。陕西混合厌氧罐工厂
厌氧反应器底部设有旋流配水系统,污水在反应器内呈旋流上升状,布水均匀且避免了“短流”现象的发生。辽宁推流式厌氧罐检修
厌氧颗粒污泥培养的要点:厌氧颗粒污泥本质上是多种微生物的聚集体,主要由各类产酸细菌和产甲烷细菌组成,产酸细菌在颗粒外部,产甲烷细菌在颗粒污泥内部。厌氧颗粒污泥的特点:颜色呈灰黑色或褐黑色,包裹灰白色生物膜。厌氧颗粒污泥的生长。厌氧颗粒污泥的维持和生长需要特定的条件。主要的指标有稀释率和微生物的生长速率。稀释率为进水流量(m3/h)除以反应器的容积(m3),即水力停留时间的倒数。微生物的生长速率为反应器中单位量的微生物(kg)可以合成微生物的速度(kg/h)。在颗粒污泥生长的过程中,微生物洗出的速度需要小于微生物的较大生长速度,一旦稀释率大于微生物较大生长速度,悬浮生长的微生物将会洗出。辽宁推流式厌氧罐检修