厌氧污泥酸化是厌氧反应器运行中较严重的事故之一。遇到此类问题,建议广大站长和操作人员应保持冷静,根据实际情况准确做出判断,并立即采取正确措施,切不可有“等等看”、“再挺一挺”等侥幸心理,从而错过了解决问题的较佳时机。如果反应器酸化的原因单单是超负荷,只要没有严重到致使厌氧污泥大量流失,在24小时至数天内,反应器中的VFA会下降到200mg/l以下,pH值会恢复至正常的水平。即使由于酸化程度过于严重或者由于其他原因导致反应器不能完全恢复,也可以使酸化程度得到缓解,为后续查明原因并采取进一步的应对措施赢得时间。当反应器的酸化被遏制后,可以进行低负荷运行,然后根据运行情况逐步增加负荷直至反应器的运行负荷和效率恢复到酸化前的正常水平。厌氧反应器具有很高的容积负荷率。北京一体化厌氧罐工艺
判断厌氧污泥的活性时,一定要重视污泥活性测试。因为一些已经酸化的厌氧颗粒污泥的外观、沉降性能、VSS/TSS等指标都不错,但由于内部的产甲烷菌死亡,已经没有厌氧处理能力了。由于钙化污泥密度大,容易沉积在厌氧反应器的底部。在颗粒污泥装车时,首先要排放掉厌氧反应器底部钙化的厌氧污泥,然后再装车,以保证污泥的品质。在完成厌氧污泥装车后,可采用静置、搅拌、晃动的方法,尽量排净污泥上层的污水,以保证足够的污泥浓度。山东有机酸行业厌氧罐厌氧反应器优点:处理高纤维含量污水不易堵塞,不易积累。
厌氧反应器厌氧分三个阶段:产氢产乙酸阶段:产氢产乙酸菌能把除乙酸、甲酸、甲醇以外的1阶段产生的中间产物(如丙酸、丁酸等脂肪酸和醇类)转化为乙酸和氢,并有CO2产生。水解阶段:复杂的有机物在厌氧菌胞外酶的作用下,首先被分解为较简单的有机物,继而在产酸菌的作用下经厌氧发酵和氧化转化为乙酸、丙酸、丁酸等脂肪酸和醇类。产甲烷阶段:产甲烷菌将一、二阶段产生的乙酸、氢和CO2等转化为甲烷。厌氧不需要供给氧气,污泥负荷相对较高,能处理较难生物降解的物质,但所需时间长,出水-般需要后续处理才能达到排放标准。
春天到了,各家工厂开始恢复生产,污水站的厌氧反应器也随之启动了。那么,在启动时到底需要投加多少厌氧颗粒污泥呢?厌氧反应器可以接种的污泥量与厌氧反应器的类型,反应器尺寸的大小有直接关系。以现在较多应用的第三代厌氧内循环反应器-IC为例,厌氧污泥的较大接种量约为IC反应器有效容积的50-55%左右,而其他类型的厌氧反应器的污泥接种量相对要少,能处理的较大有机负荷也要低一些。当一个厌氧反应器需要进行生物启动时,如果需要处理的有机负荷小于该反应器较大的处理负荷时,可以按照需处理的有机物总量核算出相应的厌氧污泥接种量,而没有必要满量接种,从而降低厌氧污泥的采购成本。进口和国产厌氧反应器的区别:厌氧反应器的结构设计。
把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器的,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。上海正泽环保科技有限公司厌氧反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。天津外循环厌氧罐种类
进入夏季以来,厌氧颗粒污泥的采购逐渐增多。北京一体化厌氧罐工艺
全混合厌氧反应器(continuousstirredtankreactor,简称CSTR)或称连续搅拌反应器系统,是一种使发酵原料和微生物处于完全混合状态的厌氧处理技术。在一个密闭罐体内完成料液的发酵、沼气产生的过程。消化器内安装有搅拌装置,使发酵原料和微生物处于完全混合状态。投料方式采用恒温连续投料或半连续投料运行。新进入的原料由于搅拌作用很快与发酵器内的全部发酵液菌种混合,使发酵底物浓度始终保持相对较低状态,以降解废水中有机污染物,并去除悬浮物的厌氧废水生物处理器。结构形式见图3:北京一体化厌氧罐工艺