安言咨询助力金融机构从以下四个方面实现***价值:首先是满足合规要求,能够***缩小数据安全合规差距,满足数据安全合规相关要求;其次是确保数据使用价值,充分了解数据资产中敏感数据管理的情况,协助管理者通过策略来**管控数据,确保数据的**大使用价值;第三是实现降本增效,能够降低金融机构在数据安全方面的人力成本、时间成本,同时提高数据分析与数据使用效率;**后是减少数据安全风险,帮助企业进行***的合规风险识别,及时提出有效的应对措施,***降低企业的数据安全风险。在数据安全服务中,数据安全风险评估服务方案的价值主要体现在风险识别与定位的准确性、合规性保障的可靠性、决策支持的有效性以及防护能力的***提升。而数据安全建设规划方案则侧重于为企业提供***的数据安全规划,提升管理效率,实现持续的安全监控,并增强业务的连续性。客户案例此前,在与某银行的合作中,安言咨询成功完成了数据安全分类分级项目,并积累了丰富的落地实践经验。数据分类分级需要梳理数据流转情况,识别数据全生命周期的安全风险和影响,同时,还要对客户的管理、技术、业务数据进行详尽的资产识别。安言咨询严格遵守《金融数据安全数据安全分级指南》。 划分风险等级,将风险划分为重大、高、中、低、轻微五级,以便企业能够根据风险等级制定相应的应对策略。深圳银行信息安全分类

银行可以进一步提升数据安全防护能力。四、挑战和重难点(1)性能与效率的平衡动态数据***可能会对数据库查询性能产生一定影响,特别是在高并发场景下。因此,银行需要在保证数据安全性的同时,合理优化***处理流程,减少对业务性能的影响。这包括优化***算法、增加缓存机制、合理分配系统资源等措施。通过平衡性能与效率,银行可以确保***处理既满足业务需求又符合安全标准。(2)复杂业务场景的应对银行业务场景复杂多样,涉及多个系统、多个应用以及多种数据类型。这要求银行在制定***策略时充分考虑各种业务场景的需求和特点,制定灵活的***方案。例如,对于跨系统数据共享场景,银行可以采用基于权限的***策略,确保不同用户只能访问其权限范围内的***数据;对于实时交易场景,银行可以采用低延迟的***处理技术,确保交易数据的实时性和准确性。(3)合规性与法律风险的防范银行业务数据动态***涉及多个法律法规的约束和要求。银行需要密切关注相关法律法规的变化和更新,及时调整***策略和技术以满足合规性要求。同时,银行还需要建立完善的合规管理体系和风险评估机制,对***处理过程中可能出现的法律风险进行防范和应对。例如,加强与监管机构的沟通和协作。 南京证券信息安全标准安言将联合合作伙伴,为用户提供可定制的技术风险测评及加固服务。

网数安全|关注安言数据是新时代的石油,更是企业**资产。然而,面对日益严峻的安全威胁和不断升级的监管要求(如《数据安全法》、《个人信息保护法》),您的企业是否正面临这些困扰?▶投入了大量安全资源,却说不清防护水平到底如何?▶担心数据泄露风险,却不知从何下手系统加固?▶面对合规审计要求,缺乏有力的证明依据?▶数据安全管理碎片化,难以形成合力?别担心!让的DSMM咨询服务为您拨云见日!一、什么是DSMM?DSMM(DataSecurityMaturityModel,数据安全成熟度模型)是我国**的数据安全建设与管理评估框架。它如同一个精密的“标尺”和清晰的“路线图”,帮助企业:•精细评估现状:系统性地从**建设、制度流程、技术工具、人员能力四大维度,***衡量您的数据安全防护水平,精细定位短板与风险点。•明确提升方向:将数据安全能力划分为5个成熟度等级(从基础合规到持续优化),清晰描绘能力进阶路径,避免盲目投入。•对标合规要求:深度契合**法律法规和行业监管要求,是证明企业数据安全合规治理水平的**依据。•驱动持续优化:建立可量化、可评估、可持续改进的数据安全管理体系,真正实现安全与业务的融合共生。
金融行业数据安全建设的三大驱动力金融行业之所以如此重视数据安全,并致力于做好数据安全,其压力以及强要求主要来自三个方面:合规、业务和风险。在合规驱动方面,****强调,要切实保障**数据安全,要加强关键信息基础设施安全保护,强化**关键数据资源保护能力,增强数据安全预警和溯源能力。此外,根据《民法典》《网络安全法》《数据安全法》以及《个人信息保护法》等上位法的指导,数据作为生产要素的地位得以确立,并对数据安全保护提出了多项具体要求。随后,陆续出台的《****银行业务领域数据安全管理办法(征求意见稿)》以及《银行保险机构数据安全管理办法(征求意见稿)》进一步明确了数据处理者的责任与义务,以及数据保护的具体要求。在业务驱动方面,金融行业业务涉及了大量的数据资产和敏感数据,结合合规的要求,这些数据需要进行细致的分类分级、API安全管理、风险评估和溯源分析。在风险驱动方面,自2020年以来,金融行业数据泄露事件持续高频发生,并呈现出**化、隐蔽化、复杂化的特点。这些接连不断且严重的数据泄露事件,对企业经济和声誉都造成了巨大损失。《银行保险机构数据安全管理办法。 通过协助内部审计和管理评审,确保AI管理体系的有效运行和持续改进。

信息安全|关注安言在金融行业数字化转型加速推进的背景下,数据安全已成为金融机构**竞争力的重要组成部分。**金融监督管理总局于2024年12月发布的《银行保险机构数据安全管理办法》(以下简称《办法》),作为金融行业数据安全的专项法规,系统性地提出了数据分类分级、全生命周期管理、个人信息保护等要求。这部法规不仅是对上位法的细化落实,更紧密回应了金融行业在数据共享、跨境传输、第三方合作等复杂场景下的安全挑战。本文将从落地注意事项与咨询建议两个维度,为金融机构提供贴合业务实际的合规实施方法论,助力机构在数据价值释放与安全风险防控之间找到平衡。《银行保险机构数据安全管理办法》**要点数据分类分级方面,《办法》要求将数据划分为**、重要、一般三级,其中一般数据进一步细分为敏感数据和其他一般数据,并采取差异化保护措施。**数据涉及**安全和公共利益,需重点防护。对于个人信息保护,《办法》强调“明确告知、授权同意”原则,收集范围限于业务必需的**小范围,共享或对外提供需取得用户同意,重大处理活动需进行影响评估。数据安全治理架构的构建是落实《办法》的重要支撑。 安言咨询作为外部智囊,将持续为企业提供前瞻性解决方案,助力其在安全与创新的平衡中稳健前行。天津金融信息安全体系认证
2024年全球数据泄露事件同比激增37%,单次泄露平均成本达435万美元,企业正面临前所未有的安全挑战。深圳银行信息安全分类
致力于协助金融客户主动识别数据安全管理中的差距,明确数据安全现状及改进空间,持续深化数据安全管理,精心规划数据安全风险评估的前中后期调研、评估以及总结工作,并据此设计了一整套成熟的数据安全风险评估咨询服务方案。该方案紧密结合《数据安全法》《个人信息保护法》《数据安全能力成熟度模型》《银行保险机构数据安全管理办法(征求意见稿)》等法律法规和标准,充分考虑行业数据安全的要求和特性,***识别企业可能存在的数据安全风险,并评估这些风险一旦触发可能带来的潜在影响,从而为企业提出综合性和可操作性强的改进建议,实现风险管理的闭环。方案中提到,企业治理数据安全可从两个重要维度出发,一是进行数据安全风险评估,二是构建健全的数据安全体系。从风险评估来看,主要分为三个主要矩阵,分别是针对管理体系的基础评估,针对技术体系的数据生命周期评估,以及针对运营体系的技术能力评估。这些评估矩阵将为企业提供***而细致的数据安全风险识别与防控策略。整个评估流程包括六个阶段。一是评估准备,确定评估目标、明确评估范围、组建评估团队、制定工作计划;二是调研评估,通过信息调研、访谈或问卷的方式;三是资产、场景识别。 深圳银行信息安全分类
供应商隐私尽调应建立分级机制,依据供应商数据接触权限实施差异化的尽调深度与频率。不同供应商与企业的数据交互程度差异较大,若对所有供应商采用统一的尽调标准,不仅会增加尽调成本,还可能导致he心风险被忽视。分级机制的he心是根据供应商接触企业数据的权限等级,划分不同的尽调级别,实施差异化管理。对于高等级供应商,即直接接触企业he心商业秘密或大量敏感个人信息的供应商,如云服务提供商、数据处理外包商,需实施深度尽调,除常规核查外,还需开展现场安全评估、渗透测试等,尽调频率至少每半年一次。对于中等级供应商,即接触一般性业务数据的供应商,如物流合作商,实施常规尽调,重点核查数据处理资质及基本安全措施,尽调...