一)向已公开个人信息中的电子邮箱、手机号等发送与其公开目的无关的商业信息;(二)利用已公开的个人信息从事网络**、传播网络谣言和虚假信息等活动;(三)处理个人明确拒绝处理的已公开个人信息;(四)对个**益有重大影响,未取得个人同意;(五)收集、留存或处理已公开个人信息的规模、时间或使用目的超出合理范围。《个人信息保护法》对应解读:第二十七条个人信息处理者可以在合理的范围内处理个人自行公开或者其他已经合法公开的个人信息;个人明确拒绝的除外。个人信息处理者处理已公开的个人信息,对个**益有重大影响的,应当依照本法规定取得个人同意。5.**标准要:《网络安全标准实践指南——个人信息保护合规审计要求》《数据安全技术个人信息保护合规审计要求》征求意见稿于2024年6月完成《网络安全标准实践指南——个人信息保护合规审计要求》发布于2025年5月标准定位:u支撑《个人信息保护法》《网络数据安全管理条例》关于个人信息保护合规审计要求的落地实施。u支撑《个人信息保护合规审计管理办法》u充分借鉴国内外数据保护审计、企业内部审计、个人信息保护工作等现状。u明确开展个人信息保护合规审计时应满足的审计原则、审计内容、方法等。即便是技术过硬的企业也难以应对复杂的合规要求,超过四分之一的企业每年在许可合规问题上花费超 50 万美元。广州金融信息安全体系认证

需强化企业数据安全防护体系,防范**信息在大模型应用场景下的流失;C端用户尤其需关注老人与孩子等群体,其在使用大模型时可能因认知差异泄露银行卡密码等个人隐私或家庭敏感数据。总体而言,随着大模型普及,其输入输出环节的数据安全将在**竞争、企业数据权保护及个人隐私防护等层面引发系统性变化,需构建多主体协同的安全治理体系。一句话总结:AI安全的本质内核是数据安全治理,因此需以AI技术赋能数据要素价值释放,通过驱动社会生产力的范式革新,为新一轮产业变革注入**动能。这一进程既需构建覆盖企业数据资产、个人信息权益、**数字**的全维度防护体系,更要以数据安全合规为基石,推动数字经济与实体经济深度融合,**终实现技术创新与安全保障的协同发展,夯实社会数字化转型的可持续发展根基。汤加贝:今年年初,以DS为**的AI技术与哪吒国漫电影呈现出相似的爆发态势:二者均以“突然爆红”的姿态引发**参与热潮,在资本助推下快速实现从国内市场向**舞台的拓展,且均因热度高涨而不缺投资关注。如同哪吒电影在国内创下152亿票房奇迹后,海外市场*收获5亿票房、远低于200亿预期的落差,当前AI技术的爆发式增长亦需警惕“狂热背后的冷静期考验”。杭州个人信息安全解决方案个人信息保护合规审计所收集的审计证据应对于个人信息合规判断具有相关性。

三是运维端通过统一管控平台集中管理,减少50%运维人力投入。实际应用数据显示,该方案可将数据泄露事件发生率压降至,漏洞响应效率提升70%,在满足等保,实现安全防护与成本控制的**优平衡。《全球制造业企业信息安全技术和管理实践心得》王思远某全球汽车零部件企业信息安全负责人某全球汽车零部件企业信息安全技术体系以“分步实施、急用先行”为原则,构建了覆盖规划、设计、落地的全生命周期防护框架。体系基于工业互联网安全框架,打造6横4纵安全技术架构,从终端、网络、应用、数据、控制和物理6个维度进行分层部署纵深防御能力,并通过红黄绿蓝分区分域策略实现差异化管控。分区分域设计是企业预防外部攻击和内部数据泄密的**措施:红区(研发)采用物理隔离与严格审批审计机制,保障绝密数据安全;黄区(生产)通过防火墙、VDI和堡垒机实现逻辑隔离,平衡效率与安全,管控机密数据,保障生产系统不会遭受勒索攻击;绿区(办公)以效率优先为主,通过事前防御+事中监控+事后审计机制,对秘密数据外发进行管控。针对生产环境特殊风险,部署微隔离方案限制机台设备东西向威胁扩散,并设置安全隔离区对新入网设备进行威胁监测,阻断带毒入网风险。
本次调查内容涉及:●大模型部署使用现状:是否已有部署?部署方式和使用场景?有无效果和价值?是否具备扩展性和推广性?●大模型应用安全挑战:在企业大模型落地实践过程中,**门发挥怎样的作用?面临怎样的挑战?**门如何为业务提供保障和支持?AI又如何能为**门赋能增效?●大模型安全典型风险:大模型本身内在风险,大模型部署使用全生命周期风险,大模型赋能业务后各类场景应用相关风险。●大模型安全需求初探:业务部门对**门有要求,**门对能力加持有需求,AI如何催生安全产业新机会?作为国内首份定位用户视角聚焦企业实践的AI安全相关报告,其填补了长久以来AI在企业实践中的认知缺口,即揭示企业AI安全关注、风险防控实践及监管政策适配的信息断层。同时,也为企业实施***的AI治理提供了数据参考和实证依据。鉴于此项调查还有部分增补修订工作,本文谨作为报告预览,即呈现关键结论和部分内容,完整报告(尤其是纸质版报告),我们会在拟于7月起举办的系列线下专题研讨会上做正式发布。**发现与重点结论:企业AI实践和安全挑战随着数字化转型深入,企业AI应用实践正从营销、客服等浅层次场景,向生产制造、供应链管理、**业务决策等深水区迈进。人信息保护合规审计人员可分为高级、 中级、 初级三个级别;

安全赋能AI企业应用三大需求:企业用户对AI大模型安全产品或服务的需求,当前**关注的**项需求分别是大模型安全测评工具,占比,外部AI大模型在企业内使用的安全解决方案,占比,以及AI的供应链安全,占比。AI安全相关预算尚处爆发前期:调查显示,目前企业已有明确AI安全预算的占比*,正在评估需求的占比,计划未来纳入预算的占比,需求优先级较低的占比。企业开始将传统的安全采购需求向AI安全方向偏移。公开征集:AI安全大框架,产业能力全景图本地调查在风险聚焦、用户需求和能力提供方面,我们规划设计并率先推出AI安全产业链大框架,其覆盖范围包括:•基础层:算力安全、数据安全、算法安全。•技术层:模型安全、智能体安全、开发平台安全。•应用层:“AI+业务”安全(金融、医疗、交通等)、AI伦理与合规。基于上述框架,我们提出AI安全能力/产品全景图:包含AI基础设施安全、平台安全、应用安全等12大模块。总体上看,企业AI应用已从“是否采用”转向“如何安全**采用”。尽管当前AI落地效果未达预期,但企业的持续投资表明,AI仍是业务变革的**驱动力。安在新媒体呼吁行业共建AI安全生态,推动技术创新与风险防控协同发展,助力AI在安全可控轨道上**前行。新增的个人信息可携带权,要求企业提供数据转移途径。上海网络信息安全产品介绍
个人信息保护合规审计的审计要点可以分为五点;广州金融信息安全体系认证
网数安全|关注安言数据是新时代的石油,更是企业**资产。然而,面对日益严峻的安全威胁和不断升级的监管要求(如《数据安全法》、《个人信息保护法》),您的企业是否正面临这些困扰?▶投入了大量安全资源,却说不清防护水平到底如何?▶担心数据泄露风险,却不知从何下手系统加固?▶面对合规审计要求,缺乏有力的证明依据?▶数据安全管理碎片化,难以形成合力?别担心!让的DSMM咨询服务为您拨云见日!一、什么是DSMM?DSMM(DataSecurityMaturityModel,数据安全成熟度模型)是我国**的数据安全建设与管理评估框架。它如同一个精密的“标尺”和清晰的“路线图”,帮助企业:•精细评估现状:系统性地从**建设、制度流程、技术工具、人员能力四大维度,***衡量您的数据安全防护水平,精细定位短板与风险点。•明确提升方向:将数据安全能力划分为5个成熟度等级(从基础合规到持续优化),清晰描绘能力进阶路径,避免盲目投入。•对标合规要求:深度契合**法律法规和行业监管要求,是证明企业数据安全合规治理水平的**依据。•驱动持续优化:建立可量化、可评估、可持续改进的数据安全管理体系,真正实现安全与业务的融合共生。广州金融信息安全体系认证
供应商隐私尽调应建立分级机制,依据供应商数据接触权限实施差异化的尽调深度与频率。不同供应商与企业的数据交互程度差异较大,若对所有供应商采用统一的尽调标准,不仅会增加尽调成本,还可能导致he心风险被忽视。分级机制的he心是根据供应商接触企业数据的权限等级,划分不同的尽调级别,实施差异化管理。对于高等级供应商,即直接接触企业he心商业秘密或大量敏感个人信息的供应商,如云服务提供商、数据处理外包商,需实施深度尽调,除常规核查外,还需开展现场安全评估、渗透测试等,尽调频率至少每半年一次。对于中等级供应商,即接触一般性业务数据的供应商,如物流合作商,实施常规尽调,重点核查数据处理资质及基本安全措施,尽调...