检测器的输出通常被用作跟踪设备的输入,跟踪设备的输出被提供给运动预测算法,该算法预测物体在接下来的几秒钟内将移动到哪里。然而,在无检测跟踪中,情况并非如此。基于DFT的模型要求必须在首帧中手动初始化固定数量的对象,然后必须在随后的帧中对这些对象进行定位。DFT是一项困难的任务,因为关于要跟踪的对...
无人机的迅猛发展,使得无人机的反制技术也水涨船高,常见的有电子干扰、无人机识别对抗等方式。后者采用图像识别技术,通过在无人机摄像头的基础上加装AI高性能图像处理板,在算法的作用下,就具备无人机识别的功能,为无人机对抗创造条件。由于无人机飞行速度极快,因此针对于这样环境下的AI识别需要“与众不同”的图像处理板。我们都知道,当视频帧率越高时,视频越能够体现画面细节信息,而图像识别算法正是逐帧进行识别,因此,摄像头捕捉到的画面细节越多,识别的精度就会越高。RV1126图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标跟踪及跟踪算法。贵州目标跟踪销售厂家
目标识别算法是一种深度学习算法,其聪明程度需要我们不断训练,这就得益于大量的图像标注,通过对车辆行驶环境的数据集的大量标注,能够让AI更加聪明,标注得越多,识别的精度就可能越高。但是大量的图像标注跟工作显然会耗费大量的时间精力。而慧视SpeedDP的出现很好地解决了这个问题。SpeedDP是一个深度学习AI算法训练开发平台,他能够通过现有的算法模型或者自训练一个算法模型,实现对新数据集的快速AI自动标注,以此反复,帮助使用者提升算法性能。能够有效节约大量的时间。辽宁目标跟踪工程慧视AI板卡能够凸显AI的智慧之能,变被动为主动,提供多种能主动预警的视频分析和人脸识别黑白名单管理。

另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。
在无人机摄像头的基础上加装慧视光电开发的Viztra-LE026图像处理板,这是一块轻型化、低功耗的图像处理板,用在无人机上面既不会过多占用空间,也不会过多消耗续航,通过目标识别算法的赋能,就可以针对像东北虎这样的动物AI自动识别,一旦识别到老虎的特征物体,无人机就能够立即锁定并抵近观察,为消防和公安提供精确坐标。Viztra-LE026图像处理板采用的是瑞芯微RV1126芯片,能够输出2.0TOPS的算力。而在算法方面,成都慧视能够提供一站式AI算法训练平台SpeedDP,通过对大量动物的标注数据集的模型训练,能够实现对新数据集的快速AI自动标注,然后提升识别算法的性能。慧视RK3588图像跟踪板支持目标跟踪识别目标(人、车)。

目标跟踪时,多维度、多层级信息融合也十分重要。为了提高对运动目标表观描述的准确度与可信性,现有的检测与跟踪算法通常对时域、空域、频域等不同特征信息进行融合,综合利用各种冗余、互补信息提升算法的精确性与鲁棒性.然而,目前大多算法还只是对单一时间、单一空间的多尺度信息进行融合,使用者可以考虑从时间、推理等不同维度,对特征、决策等不同层级的多源互补信息进行融合,提升检测与跟踪的准确性。成都慧视开发的Viztra-HE030图像处理板采用了RK3588高性能芯片,工业级的处理能力能够运用到诸多行业。RV1126图像处理板识别概率超过85%。四川流畅目标跟踪
用于安防监控及状态监测的摄像头数量的飞速发展。贵州目标跟踪销售厂家
无人机只需要从基地起飞,就能够对指定区域进行巡检,智能摄像头能够自动问诊地面,识别护栏错位、路面积水、凹陷、裂缝、交通事故、车流异常等问题,然后标记位置。而控制中心能够实时查看前方画面,接收无人机回传的数据,并进行诊断分析,整个过程无需过多的人工干预。这种无人机智能问诊,是通过向无人机植入高性能的AI图像处理板以及定制专门的目标识别算法来实现的。成都慧视开发的Viztra-LE026图像处理板,就非常适合用在无人机智能化领域。这块板卡外形呈圆形设计,尺寸为ф38*12mm,功率不超过4W,整体呈现功耗低、尺寸小的特点。用在紧凑型的无人机当中也不会因为空间问题而苦恼,并且不会过多消耗无人机的续航。此外,Viztra-LE026这款图像处理板采用的是RV1126芯片,2.0TOPS的算力用在路面识别领域十分合适。贵州目标跟踪销售厂家
检测器的输出通常被用作跟踪设备的输入,跟踪设备的输出被提供给运动预测算法,该算法预测物体在接下来的几秒钟内将移动到哪里。然而,在无检测跟踪中,情况并非如此。基于DFT的模型要求必须在首帧中手动初始化固定数量的对象,然后必须在随后的帧中对这些对象进行定位。DFT是一项困难的任务,因为关于要跟踪的对...
甘肃智慧城市AI智能安全帽识别
2025-12-22
广西高性能目标识别自主可控
2025-12-21
附近目标跟踪产品
2025-12-21
网络目标跟踪应用
2025-12-21
河南图像处理板好选择
2025-12-21
可靠目标跟踪要多少钱
2025-12-21
陕西稳定目标识别软件
2025-12-21
江西智慧养老AI智能解决方案
2025-12-21
省时省力目标跟踪要多少钱
2025-12-21