3、信号完整性的设计方法(步骤)掌握信号完整性问题的相关知识;系统设计阶段采用规避信号完整性风险的设计方案,搭建稳健的系统框架;对目标电路板上的信号进行分类,识别潜在的SI风险,确定SI设计的总体原则;在原理图阶段,按照一定的方法对部分问题提前进行SI设计;PCB布线阶段使用仿真工具量化信号的各项性能指标,制定详细SI设计规则;PCB布线结束后使用仿真工具验证信号电源等网络的各项性能指标,并适当修改。
4、设计难点信号质量的各项特征:幅度、噪声、边沿、延时等。SI设计的任务就是识别影响这些特征的因素。难点1:影响信号质量的因素非常多,这些因素有时相互依赖、相互影响、交叉在一起,抑制了某一因素可能会导致其他方面因素的恶化,所有需要对各因素反复权衡,做出系统化的综合考虑;难点2:有些影响信号传输的因素是可控的,而有些是不可控的。 克劳德信号完整性测试理论研究;智能化多端口矩阵测试信号完整性分析维修

时域数字信号转换得到的频域信号如果起来,则可以复现原来的时域信号。如图1・2 所示描绘了直流频率分量加上基频频率分量与直流频域分量加上基频和3倍频频率分量,以 及5倍频率分量成的时域信号之间的差别,我们可以看到不同频域分量的所造成的时域信号边沿的差别。频域里包含的频域分量越多,这些频域分量成的时域信号越接近 真实的数字信号,高频谐波分量主要影响信号边沿时间,低频的分量影响幅度。当然,如果 时域数字信号转变岀的一个个频率点的正弦波都叠加起来,则可以完全复现原来的时域 数字信号。其中复原信号的不连续点的震荡被称为吉布斯震荡现象。通信信号完整性分析维修电话信号完整性测试所需工具说明;

信号的能量大部分集中在信号带宽以下,意味着我们在考虑这个信号的传输效应时, 主要关注比较高频率可以到信号的带宽。
所以,假如在数字信号的传输过程中可以保证在信号的带宽(0.35亿)以下的频率分量(模 拟信号)经过互连路径的质量,则我们可以保证接收到比较完整的数字信号。
然而,我们会在下面看到在考虑信号完整性问题时由于传输路径阻抗不连续对信号的反 射,损耗随频率的增加而增加的特性等因素,这些频率分量在传输时会有畸变,从而造成接 收到的各个频率的分量叠加在时并不能完全保证复现原有的时域的数字信号。
根据上述数据,你就可以选择层叠了。注意,几乎每一个插入其它电路板或者背板的PCB都有厚度要求,而且多数电路板制造商对其可制造的不同类型的层有固定的厚度要求,这将会极大地约束终层叠的数目。你可能很想与制造商紧密合作来定义层叠的数目。应该采用阻抗控制工具为不同层生成目标阻抗范围,务必要考虑到制造商提供的制造允许误差和邻近布线的影响。在信号完整的理想情况下,所有高速节点应该布线在阻抗控制内层(例如带状线)。要使SI比较好并保持电路板去耦,就应该尽可能将接地层/电源层成对布放。如果只能有一对接地层/电源层,你就只有将就了。如果根本就没有电源层,根据定义你可能会遇到SI问题。你还可能遇到这样的情况,即在未定义信号的返回通路之前很难仿真或者仿真电路板的性能。提供完整信号完整性测试解决方案;

信号完整性--系统化设计方法及案例分析
信号完整性是内嵌于PCB设计中的一项必备内容,无论高速板还是低速板或多或少都会涉及信号完整性问题。仿真或者guideline的确可以解决部分问题,但无法覆盖全部风险点,对高危风险点失去控制经常导致设计失败,保证设计成功需要系统化的设计方法。许多工程师对信号完整性知识有所了解,但干活时却无处着手。把信号完整性设计落到实处,也需要清晰的思路和一套可操作的方法。系统化设计方法是于争博士多年工程设计中摸索总结出来的一套稳健高效的方法,让设计有章可循,快速提升工程师的设计能力。
信号完整性(SI)和电源完整性(PI)知识体系中重要的知识点,以及经常导致设计失败的隐藏的风险点。围绕这些知识点,通过一个个案例逐步展开系统化设计方法的理念、思路和具体操作方法。通过一个完整的案例展示对整个单板进行系统化信号完整性设计的执行步骤和操作方法。 什么是高速电路 高速电路信号完整性分析。江西信号完整性分析一致性测试
克劳德实验室信号完整性测试系统平台;;智能化多端口矩阵测试信号完整性分析维修
眼图测试
眼图测试是常用的测试手段,特别是对于有规范要求的接口,比如 E1/T1、USB、10/100BASE-T,还有光接口等。这些标准接口信号的眼图测试,主要是用带 MASK(模板)的示波器,包括通用示波器,采样示波器或者信号分析仪,这些示波器内置的时钟提取功能,可以显示眼图,对于没有 MASK 的示波器,可以使用外接时钟进行触发。使用眼图测试功能,需要注意测试波形的数量,特别是对于判断接口眼图是否符合规范时,数量过少,波形的抖动比较小,也许有一下违规的情况,比如波形进入 MASK 的某部部分,就可能采集不到,出现误判为通过,数量太多,会导致整个测试时间过长,效率不高,通常情况下,测试波形数量不少于 2000,在 3000 左右为适宜。 智能化多端口矩阵测试信号完整性分析维修