以太网帧的概述:
以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。
/域
(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据。当发生时,物理网段上的数据都不再有效。
域:在同一个域中的每一个节点都能收到所有被发送的帧。
影响产生的因素:是影响以太网性能的重要因素,由于的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生的原因有很多,如同一域中节点的数量越多,产生的可能性就越大。此外,诸如数据分组的长度(以太网的比较大帧长度为1518字节)、网络的直径等因素也会影响的产生。因此,当以太网的规模增大时,就必须采取措施来控制的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的域划分为若干小域。
何不使用以太网电缆同时进行数据传输和供电?PCI-E测试以太网测试项目

10M 以太网
10Mbps以太网即标准以太网,由IEEE802.3定义,同一公共通信信道上的所有用户共享这个带宽,这个公共信道称为总线。在交换式LAN中,每个交换式端口都是一个以太网总线,采用星型拓扑结构。这种连接方式下将有可能提供全双工的连接,此时,将提供20Mbps的总带宽。根据IEEE802.3的规定,10M以太网目前使用的线缆有:10Base-T双绞线、10Base5粗同轴电缆以及10Base2细同轴电缆。10Base-T是目前使用为的一种以太网电缆标准。它具有一个优势就是易于扩展,维护简单,价格低廉,一个集线器加上几根10Base-T电缆,就能构成一个实用的小型局域网(当然还得有计算机),10Base-T的缺点是:电缆的比较大有效传输距离是距集线器100m,即使是高质量的5类双绞线也只能达到150m。3类到6类双绞线在塑料外壳内均有这样的四对线缆,区别主要在于类数越高的双绞线,单位长度内的绞环数越多,拧得越紧,这使得5类或者6类双绞线的交感更少并且在更长的距离上信号质量更好,更适用于高速计算机通信。各种设备需要使用具体的线缆连接起来。目前应用于各种网络设备的接口可能使用双绞线接口或光纤接口。双绞线和光纤接口之间不能直接相连,必须使用光电转换设备。
校准以太网测试项目工业以太网交换机的分类有哪些?

千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。当今居于主导地位的局域网技术-以太网。以太网是建立在以太网CSMA/CD机制上的广播型网络。的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备。不能隔绝扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备,然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为有前途的网络技术。
从EtherNet/IP®到EtherCAT®的以太网解决方案以其独特的方式克服了这些缺点。尽管工业以太网相较于别的替代技术还有一些其它优势,然而它在运动控制中还远没有占到主导地位。我们来看看它能够并且将会在未来几年的竞争中越来越被接受的三个原因。
融合而不是增加复杂性
随着时间的推移,企业IT与工厂之间的互联不断增加,导致了系统更复杂,往往将标准以太网和工业以太网与现场总线混合使用。例如,机器可能会利用:
适用于与伺服器进行通信的SERCOS1
适用于联网变频驱动器的PROFIBUS®
适用于故障安全现场总线通信的SafetyBUSp
适用于连接至传感器的DeviceNet
适用于向终用户发送数据、通过网关访问的以太网 车载以太网简介及物理层测试;

交换式以太网
交换式结构:
在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲出。
为什么要用交换式网络替代共享式网络:
减少冲出:交换机将冲出隔绝在每一个端口(每个端口都是一个冲出域),避免了冲出的扩散。
提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。
1000Base-T的信号传输方式;PCI-E测试以太网测试项目
选择工业以太网交换机主要参考那些因素?PCI-E测试以太网测试项目
发射机功率谱密度:正常发送的10GBase-T的信号是类似噪声的信号,从时域分析比较困难,对其功率的衡量主要是从频域测试。这时被测件发出正常的随机数据流,
用频谱仪(或者示波器做FFT变换)测量其频域的功率分布,确保满足频谱模板的要求。·发射机功率:与上面一个测试类似,都是在频域进行测量。这个测试是用频谱仪测量验证被测件在频域发送的总功率满足3.2~5.2dBm的要求。
发送时钟频率:与发射机抖动测试项目的测试方法类似,被测件发出类似时钟的信号, 用示波器测量信号频率验证被测件的符号速率在800MHz±50ppm* 的范围内。 PCI-E测试以太网测试项目