高速数字信号传输电路的设计与仿真
高速数字系统设计成功的关键在于保持信号的完整,而影响信号完整性(即信号质量)的因素主要有传输线的长度、电阻匹配及电磁干扰、串扰等。设计过程中要保持信号的完整性必须借助一些仿真工具,仿真结果对PCB布线产生指导性意见,布线完成后再提取网络,对信号进行布线后仿真,仿真没有问题后才能送出加工。目前这样的仿真工具主要有cadence、ICX、Hyperlynx等。Hyperlynx是个简单好用的工具,软件中包含两个工具LineSim和BoardSim。LineSim用在布线设计前约束布线和各层的参数、设置时钟的布线拓扑结构、选择元器件的速率、诊断信号完整性,并尽量避免电磁辐射及串扰等问题。BoardSim用于布线以后快速地分析设计中的信号完整性、电磁兼容性和串扰问题,生成串扰强度报告,区分并解决串扰问题。作者使用LineSim工具,对信号的阻抗匹配、传输线的长度、串扰进行了仿真分析,并给出了指导性结论。 高速信号传输代替高速信号设计的概念或高速电路设计的概念才能正确处理信号的保形传输问题?上海高速信号传输HDMI测试
2.3.1信号完整性的定义信号完整性,
英文为SignalIntegrity,简称SI,指信号在传输过程中,其波形保持不变或只在可容许范围内失真,不影响信号接收器对信号的正确接收和解码。信号完整性表示信号的质量在经过传输通道传输后仍保持相对良好的特性。我们以“河道中的波浪”类比信号传输通道上的电信号,以河道与“空中的水汽通道”组成的波浪传输通道类比信号传输通道,可以更直观地理解信号完整性的概念,虽然这个类比不是十分恰当。
一条河道连接上游和下游两个水库,平静的河流在河道中流淌,当上游水库的闸门突然被抬高(或压低)时,河流上游端的水位由于水库出水量的突然增加(或减少)而升高(或下降),水位的升高(或下降)变化形成一个一定形状的波浪,波浪沿着河道向下游移动,直到下游水库入口处。波浪在移动到下游水库入口处时,其形状有两种情况:一是波浪的形状与在上游水库出口处形成时的形状保持着一定程度的相似性,我们就认为波浪形状在移动过程中是良好的,是完整的;二是由于各种原因使得波浪的形状与形成时的形状有很大差别,我们就认为波浪的形状是不良好的,是不完整的。 USB测试高速信号传输服务热线高速信号传输距离与什么有关;
数字信号的时域特性
例如,一个周期为T=25ns的时钟信号,其时钟频率为f=1/25ns=0.04GHz=40MHz。信号的上升时间通常定义为信号从终值的10%跃变到90%所经历的时间,又称之为10~90上升时间。信号的下降时间定义为从终值的90%跃变到10%所经历的时间。2.1.3数字信号的频域特性任何一个信号都可以由一组正弦波组合而成,在数学上可以将信号波形的数学描述通过傅里叶变换转换为一组正弦波,每一个正弦波称为信号的一个频率分量,每一个频率分量都有相关的幅度和相位,我们把所有这些频率值及其幅度值的称为信号的频谱。信号的波形是时域的表现,信号的频谱是频域的表现,把时域信号以信号的频谱表示称为信号的时域—频域变换,即傅里叶变换。如果我们知道信号的频谱,要观察它的时域波形,只需将每个频率分量变换成它的时域正弦波,再将其全部叠加即可,这个过程称为傅里叶逆变换。
数字信号的时域特性
例如,对于1GHz的理想方波,其幅值为1V,将其变换到频域中的频谱则描述如下:●个频率分量的频率是0,幅度为0.5V,这个分量描述了时域中的直流分量,称为零次谐波;●第二个频率分量的频率是1GHz,幅度为0.63V,这个分量称为一次谐波,一次谐波与零次谐波叠加,在时域中得到均值偏移为0.5V的正弦波。这与理想方波还有一定的差距;●第三个频率分量的频率是3GHz,幅度为0.21V,这个分量称为三次谐波,三次谐波和一次谐波、零次谐波的叠加结果再叠加,在时域中得到的信号波形顶端更平滑,更接近于方波,上升时间更短;……依次下去,将所有相继的高次谐波与前面已经叠加的结果叠加,得出的结果会越来越像方波,上升时间会越来越短。 高速信号传输用串行还是并行;
高速信号传输
串扰分析
由于频率的提高,传输线之间的串扰明显增大,对信号完整性也有很大的影响,可以通过仿真来预测、模拟,并采取措施加以改善。以CMOS信号为例建立仿真模型,如图6所示。在仿真时设置干扰信号的频率为66MHz的方波,扰者设置为零电平输入,通过调整两根线的间距和两线之间平行走线的长度来观察扰者接收端的波形。仿真结果如图7,分别为间距是203.2mm、406。4mm时的波形。
从仿真结果看出,两线间距为406.4mm时,串扰电平为200mV左右,203.2mm时为500mV左右。可见两线之间的间距越小串扰越大,所以在实际高速PCB布线时应尽量拉大传输线间距或在两线之间加地线来隔离。 高速信号传输技术的内涵 高速信号和处理需要考虑三部分设计;上海高速信号传输HDMI测试
高速信号传输研究的主要目的是解决信号保形传输问题;上海高速信号传输HDMI测试
克劳德高速数字信号测试实验室
高速信号传输技术的内涵高速电信号传输设计与分析是电子设计工程师必须掌握的基本技能。电子产品处理器主频高至GHz、传输速率达到Gbps以上,高速信号的处理和传输要求电子设计工程师必须至少具备以下三项技能:
●高速逻辑时序设计;
●高速电路散热设计;
●高速信号传输设计。
①逻辑时序设计对于数字电路设计工程师而言,无论其开发的数字电路是所谓的低速数字电路,还是高速数字电路,都是基本的设计。电子工程师在进行时序设计时,有一个很重要的假设:数字逻辑信号传输没有失真。因此,逻辑时序设计更多的是考虑信号的逻辑运算、信号延时、信号的同步等因素。 上海高速信号传输HDMI测试
深圳市力恩科技有限公司是以提供实验室配套,误码仪,协议分析仪,矢量网络分析仪为主的有限责任公司,公司成立于2014-04-03,旗下克劳德,已经具有一定的业内水平。力恩科技以实验室配套,误码仪,协议分析仪,矢量网络分析仪为主业,服务于仪器仪表等领域,为全国客户提供先进实验室配套,误码仪,协议分析仪,矢量网络分析仪。将凭借高精尖的系列产品与解决方案,加速推进全国仪器仪表产品竞争力的发展。
2.2高速信号传输相关的三个方面 上面已经讨论过,高速信号传输研究的主要目的是解决信号保形传输问题,由信号传输的三要素可知,信号的保形传输必须涉及以下三个方面的问题: ●保证信号发送器和信号接收器正常工作; ●保证信号传输过程中信号无失真或有可以允许的失真; ●保证信号在传输过程中无干扰或有可以容许的干扰。 如何设计电源系统,以提供电流相对充足、电压相对稳定的电源给受电器件(信号发送器和信号接收器);如何控制传输通道各段的阻抗,以使其具有相对的一致性;如何设计电磁屏蔽,以控制电磁干扰性和电磁敏感性,保证信号能够被信号接收器正确解码。以上这三个方面是高速信号传输...