纳米压痕试验举例,试验材料取单晶铝,试验在美国 MTS 公司生产的 Nano Indenter XP 型纳米硬度仪以及美国 Digital Instruments 公司生产的原子力显微镜 (AFM) 上进行。首先将试样放到纳米硬度仪上进行压痕试验,根据设置的较大载荷或者压痕深度的不同,试验时间从数十分钟到若干小时不等,中间过程不需人工干预。试验结束后,纳米压痕仪自动计算出试样的纳米硬度值和相关重要性能指标。本试验中对单晶铝(110) 面进行检测,设置压痕深度为1.5 μ m,共测量三点,较终结果取三点的平均值。纳米力学测试的结果对于预测纳米材料在实际应用中的表现具有重要参考价值。深圳工业纳米力学测试方法

纳米拉曼光谱法,纳米拉曼光谱法是一种非常有用的测试方法,可以用来研究材料的力学性质。该方法利用激光对材料进行激发,通过测量材料产生的拉曼散射光谱来获得材料的力学信息。纳米拉曼光谱法可以提供关于材料中分子振动的信息,从而揭示材料的化学成分和晶格结构。利用纳米拉曼光谱法可以研究材料的应力分布、材料的强度以及材料在纳米尺度下的变形行为等。纳米拉曼光谱法具有非接触、高灵敏度和高分辨率的特点,适用于研究纳米尺度材料力学性质的表征。湖北涂层纳米力学测试收费标准纳米力学测试通常在真空或者液体环境下进行,以保证测试的准确性。

日本:S.Yoshida主持的Yoshida纳米机械项目主要进行以下二个方面的研究:⑴.利用改制的扫描隧道显微镜进行微形貌测量,已成功的应用于石墨表面和生物样本的纳米级测量;⑵.利用激光干涉仪测距,在激光干涉仪中其开发的双波长法限制了空气湍流造成的误差影响;其实验装置具有1n m的测量控制精度。日本国家计量研究所(NRLM)研制了一套由稳频塞曼激光光源、四光束偏振迈克尔干涉仪和数据分析电子系统组成的新型干涉仪,该所精密测量已涉及一些基本常数的决定这一类的研究,如硅晶格间距、磁通量等,其扫描微动系统主要采用基于柔性铰链机构的微动工作台。
纳米压痕法:纳米压痕硬度法是一类测量材料表面力学性能 的先进技术。其原理是在加载过程中 试样表面在压头作用下首先发生弹性变形,随着载荷的增加试样开始发生塑性变形,加载曲线呈非线性,卸载曲线反映被测物体的弹性恢复过程。通过分析加卸载曲线可以得到材料的硬度和弹性模量等参量。纳米压痕法不只可以测量材料的硬度和弹性模量,还可以根据压头压缩过程中脆性材料产生的裂纹估算材料的断裂韧性,根据材料的位移压力曲线与时间的相关性获悉材料的蠕变特性。除此之外,纳米压痕法还用于纳米膜厚度、微结构,如微梁的刚度与挠度等的测量。在进行纳米力学测试前,需要对测试样品进行表面处理和尺寸测量,以确保测试结果的准确性。

德国:T.Gddenhenrich等研制了电容式位移控制微悬臂原子力显微镜。在PTB进行了一系列称为1nm级尺寸精度的计划项目,这些研究包括:①.提高直线和角度位移的计量;②.研究高分辨率检测与表面和微结构之间的物理相互作用,从而给出微形貌、形状和尺寸的测量。已完成亚纳米级的一维位移和微形貌的测量。中国计量科学研究院研制了用于研究多种微位移测量方法标准的高精度微位移差拍激光干涉仪。中国计量科学研究院、清华大学等研制了用于大范围纳米测量的差拍法―珀干涉仪,其分辨率为0.3nm,测量范围±1.1μm,总不确定度优于3.5nm。中国计量学院朱若谷提出了一种能补偿环境影响、插入光纤传光介质的补偿式光纤双法布里―珀罗微位移测量系统,适合于纳米级微位移测量,可用于检定其它高精度位移传感器、几何量计量等。在进行纳米力学测试时,需要选择合适的测试方法和参数,以确保测试结果的准确性和可靠性。广州高校纳米力学测试应用
纳米力学测试技术的发展为纳米材料在能源、环保等领域的应用提供了更多可能性。深圳工业纳米力学测试方法
较大压痕深度1.5 μ m时的试验结果,其中纳米硬度平均值为0.46GPa,而用传统硬度计算方法得到的硬度平均值为0.580GPa,这说明传统硬度计算方法在微纳米硬度测量时误差较大,其原因就是在微纳米硬度测量时,材料变形的弹性恢复造成残余压痕面积较小,传统方法使得计算结果产生了偏差,不能正确反映材料的硬度值。图片通过对不同载荷下的纳米硬度测量值进行比较发现,单晶铝的纳米硬度值并不是恒定的, 而是在一定范围内随着载荷(压头位移)的降低而逐渐增大,也就是存在压痕尺寸效应现象。图3反映了纳米硬度随压痕深度的变化。较大压痕深度1μm时单晶铝弹性模量与压痕深度的关系。此外,纳米硬度仪还可以输出接触刚、实时载荷等随压头位移的变化曲线,试验者可以从中获得丰富的信息。深圳工业纳米力学测试方法