2005 年,中国科学院上海硅酸盐研究所的曾华荣研究员在国内率先单独开发出定频成像模式的AFAM,但不能测量模量。随后,同济大学、北京工业大学等单位也对这种成像模式进行了研究。2011 年初,我们研究组将双频共振追踪技术用于AFAM,实现了快速的纳米模量成像(一幅256×256 像素的图像只需1~2min),并对其准确度和灵敏度进行了系统研究。较近几年,AFAM 引起了越来越多国内外学者的关注。然而,相对于其他AFM 模式,AFAM 的测量原理涉及梁振动力学和接触力学,初学者不容易掌握。在进行纳米力学测试前,需要对测试样品进行表面处理和尺寸测量,以确保测试结果的准确性。深圳原位纳米力学测试参考价

特点:能同时实现SEM/FIB高分辨成像和纳米力学性能测试,力学测量范围0.5nN-200mN(9个数量级),位移测量范围0.05nm-21mm(9个数量级),五轴(X,Y,Z,旋转,倾斜)闭环控制保证样品和微力传感探针的精确对准,能在SEM/FIB较佳工作距离下实现高分辨成像(可达4mm)以及FIB切割和沉积,五轴(X,Y,Z,旋转,倾斜)位移记录器实现样品台上多样品的自动测试和扫描,导电的微力传感探针可有效减少荷电效应,能够通过力和位移两种控制模式实现各种力学测试,例如拉伸、压缩、弯曲、剪切、循环和断裂测试等,电性能测试模块能够实现力学和电学性能同步测试(样品座配备6个电极)导电的微力传感探针可有效减少荷电效应,实现力学性能测试与其他SEM/FIB原位分析手段联用,如EDX、EBSD、离子束沉积和切割,兼容于SEM本身的样品台,安装和卸载快捷方便。深圳表面微纳米力学测试模块纳米力学测试可以帮助研究人员了解纳米材料的力学性能与结构之间的关系,为纳米材料的设计和优化提供指导。

目前纳米压痕在科研界和工业界都得到了普遍的应用,但是它仍然存在一些难以克服的缺点,比如纳米压痕实际上是对材料有损的测试,尤其是对于薄膜来说;其压针的曲率半径一般在50 nm 以上,由于分辨率的限制,不能对更小尺度的纳米结构进行测试;纳米压痕的扫描功能不强,扫描速度相对较慢,无法捕捉材料在外场作用下动态性能的变化。基于AFM 的纳米力学测试方法是另一类被普遍应用的测试方法。1986 年,Binnig 等发明了头一台原子力显微镜(AFM)。AFM 克服了之前扫描隧道显微镜(STM) 只能对导电样品或半导体样品进行成像的限制,可以实现对绝缘体材料表面原子尺度的成像,具有更普遍的应用范围。AFM 利用探针作为传感器对样品表面进行测试,不只可以获得样品表面的形貌信息,还可以实现对材料微区物理、化学、力学等性质的定量化测试。目前,AFM 普遍应用于物理学、化学、材料学、生物医学、微电子等众多领域。
在AFAM 测试系统开发方面,Hurley 等开发了一套基于快速数字信号处理的扫频模式共振频率追踪系统。这一测试系统可以根据上一像素点的接触共振频率自动调整扫描频率的上下限。随后,他们又开发出一套称为SPRITE(scanning probe resonance image tracking electronics) 的测试系统,可以同时对探针两阶模态的接触共振频率和品质因子进行成像,并较大程度上提高成像速度。Rodriguez 等开发了一种双频共振频率追踪(dual frequency resonance tracking,DFRT) 的方法,此种方法应用于AFAM 定量化成像中,可以同时获得探针的共振频率和品质因子。日本的Yamanaka 等利用PLL(phase locked loop) 电路实现了UAFM 接触共振频率追踪。纳米力学测试通常在真空或者液体环境下进行,以保证测试的准确性。

借助原子力显微镜(AFM)的纳米力学测试法,利用原子力显微镜探针的纳米操纵能力对一维纳米材料施加弯曲或拉伸载荷。施加弯曲载荷时,原子力显微镜探针作用在一维纳米悬臂梁结构高自山端國双固支结构的中心位置,弯曲挠度和载荷通过原子力显微镜探针悬曾梁的位移和悬臂梁的刚度获取,依据连续力学理论,由试样的载荷一挠度曲线获得其弹性模量、强度和韧性等力学性能参数。这种方法加载机理简单,相对拉伸法容易操作,缺点是原子力显微镜探针的尺寸与被测纳米试样相比较大,挠度较大时探针的滑动以及试样中心位置的对准精度严重影响测试精度3、借助微机电系统(MEMS)技术的片上纳米力学测试法基于 MEMS 的片上纳米力学测试法采用 MEMS 微加工工艺将微驱动单元、微传感单元或试样集成在同一芯片上,通过微驱动单元对试样施加载荷,微位移与微力检测单元检测试样变形与加载力,进面获取试样的力学性能。纳米力学测试应用于半导体、生物医学、能源等多个领域,具有普遍前景。海南高精度纳米力学测试应用
纳米力学测试在材料设计和产品开发中发挥着重要作用,能够提供关键的力学性能参数。深圳原位纳米力学测试参考价
AFAM 方法较早是由德国佛罗恩霍夫无损检测研究所Rabe 等在1994 年提出的。1996 年Rabe 等详细分析了探针自由状态以及针尖与样品表面接触情况下微悬臂的动力学特性,建立了针尖与样品接触时共振频率与接触刚度之间的定量化关系。之后,他们还给出了考虑针尖与样品侧向接触、针尖高度及微悬臂倾角影响的微悬臂振动特征方程。他们在这方面的主要工作奠定了AFAM 定量化测试的理论基础。Reinstaedtler 等利用光学干涉法对探针悬臂梁的振动模态进行了测量。Turner 等采用解析方法和数值方法对比了针尖样品之间分别存在线性和非线性相互作用时,点质量模型和Euler-Bernoulli 梁模型描述悬臂梁动态特性的异同。深圳原位纳米力学测试参考价