纳米力学测试相关图片
  • 深圳高精度纳米力学测试供应,纳米力学测试
  • 深圳高精度纳米力学测试供应,纳米力学测试
  • 深圳高精度纳米力学测试供应,纳米力学测试
纳米力学测试基本参数
  • 品牌
  • 星石科技
  • 型号
  • 齐全
  • 类型
  • 纳米力学测试
纳米力学测试企业商机

较大压痕深度1.5 μ m时的试验结果,其中纳米硬度平均值为0.46GPa,而用传统硬度计算方法得到的硬度平均值为0.580GPa,这说明传统硬度计算方法在微纳米硬度测量时误差较大,其原因就是在微纳米硬度测量时,材料变形的弹性恢复造成残余压痕面积较小,传统方法使得计算结果产生了偏差,不能正确反映材料的硬度值。图片通过对不同载荷下的纳米硬度测量值进行比较发现,单晶铝的纳米硬度值并不是恒定的, 而是在一定范围内随着载荷(压头位移)的降低而逐渐增大,也就是存在压痕尺寸效应现象。图3反映了纳米硬度随压痕深度的变化。较大压痕深度1μm时单晶铝弹性模量与压痕深度的关系。此外,纳米硬度仪还可以输出接触刚、实时载荷等随压头位移的变化曲线,试验者可以从中获得丰富的信息。原子力显微镜(AFM)在纳米力学测试中发挥着重要作用,可实现高分辨率成像。深圳高精度纳米力学测试供应

深圳高精度纳米力学测试供应,纳米力学测试

随着精密、 超精密加工技术的发展,材料在纳米尺度下的力学特性引起了人们的极大关注研究。而传统的硬度测量方法只适于宏观条件下的研究和应用,无法用于测量压痕深度为纳米级或亚微米级的硬度( 即所谓纳米硬度,nano- hardness) 。近年来,测量纳米硬度一般采用新兴的纳米压痕技术 (nano-indentation),由于采用纳米压痕技术可以在极小的尺寸范围内测试材料的力学性能,除了塑性性质外,还可反映材料的弹性性质,因此得到了越来越普遍的应用。海南微电子纳米力学测试技术纳米力学测试通常在真空或者液体环境下进行,以保证测试的准确性。

深圳高精度纳米力学测试供应,纳米力学测试

原位纳米压痕仪的主要功能为:安装于SEM或者FIB中,可以对金属材料、陶瓷材料、生物材料及复合材料等各种材料精确施加载荷、检测形变量。在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,还可研究材料在动态力、热等多场耦合条件下结构与性能的关系。ALEMNIS原位纳米压痕仪可与多种分析设备联用,如扫描电镜、光学显微镜和同步辐射装置等,并实现多种应用场景。该原位纳米压痕仪是一款能实现本征位移控制模式的压痕仪。依托于该设备的精巧设计及精细加工,对于不同的应用场景,其均具有灵活性、精确性和可重复性。

纳米压痕试验举例,试验材料取单晶铝,试验在美国 MTS 公司生产的 Nano Indenter XP 型纳米硬度仪以及美国 Digital Instruments 公司生产的原子力显微镜 (AFM) 上进行。首先将试样放到纳米硬度仪上进行压痕试验,根据设置的较大载荷或者压痕深度的不同,试验时间从数十分钟到若干小时不等,中间过程不需人工干预。试验结束后,纳米压痕仪自动计算出试样的纳米硬度值和相关重要性能指标。本试验中对单晶铝(110) 面进行检测,设置压痕深度为1.5 μ m,共测量三点,较终结果取三点的平均值。纳米力学测试可以帮助研究人员了解纳米材料的力学响应机制,从而推动纳米科学的发展。

深圳高精度纳米力学测试供应,纳米力学测试

电子/离子束云纹法和电镜扫描云纹法,利用电子/离子東抗蚀剂制作出10000线/mm的电子/离子東云纹光栅,这种光栅的应用频率范围为40~20000线/mm,栅线的较小宽度可达到几十纳米。电镜扫描条纹的倍增技术用于单晶材料纳米级变形测量。其原理是:在测量中,单晶材料的晶格结构由透射电镜(TEM)采集并记录在感光胶片上作为试件栅,以几何光栅为参考栅,较终通过透射电镜放大倍数与试件栅的频率关系对上述两栅的干涉云纹进行分析,即可获得单晶材料表面微小的应变场。STM/晶格光栅云纹法,隧道显微镜(STM)纳米云纹法是测量表面位移的新技术。测量中,把扫描隧道显微镜的探针扫描线作为参考栅,把物质原子晶格栅结构作为试件栅,然后对这两组栅线干涉形成的云纹进行纳米级变形测量。运用该方法对高定向裂解石墨的纳米级变形应变进行测试,得到随扫描范围变化的应变场。纳米力学测试旨在探究微观尺度下材料的力学性能,为科研和工业领域提供有力支持。广西纺织纳米力学测试仪

解决方案之一:采用新型纳米材料,提高力学性能,拓宽应用范围。深圳高精度纳米力学测试供应

借助电子显微镜(EM)的原位纳米力学测试法,利用扫描电子显微镜或透射电子显微镜(TEM)的高分辨率成像,在EM 真空腔内进行原位纳米力学测试,根据纳米试样在EM真空腔中加载方式不同分为谐振法和拉伸法。原位测试法的较大优点是能够在 SEM 中实时观测试样的失效引发过程,甚至能够用 TEM 对缺陷成核和扩展情况进行原子级分辨率的实时观测;缺点是需在 EM 真空腔内对纳米试样施加载荷,限制了其加载环境,并且加载力的检测还需其他装置才能完成。深圳高精度纳米力学测试供应

与纳米力学测试相关的**
与纳米力学测试相关的标签
信息来源于互联网 本站不为信息真实性负责