扩展性通用性强赛融水质监测站基于赛融物联网平台搭建,集成了设备接入、设备全生命周期管理、规则引擎、场景联动等能力,支持多场景、多类型传感器接入,并可以根据指标要求进行灵活配置;支持数据实时展示,以及各类数据、日志信息的记录、查询、导出、分析等操作;提供报警、系统操作等日志;支持应用的定制开发。产品扩展性和通用性强,具有可灵活配置的特点。水质监测站可根据环境要求,采用物联网集成配置各种外部设备,可实现外接视频监控、光谱扫描、无人机巡检、土壤监测、大气监测等功能;支持设备联动控制,实现增氧器、水泵等设备的智能控制。具备多个量程选择和量程自动切换功能。湖北模块化单元水质监测

智能水质监测机柜解决方案通过部署高精度传感器、数据采集与传输设备、智能分析平台,实现对水体质量的实时监测和远程管理。该方案适用于环保、水务、工业、农业、水产养殖等多个领域,帮助用户提升水质管理效率,降低运营成本。2.方案组成2.1硬件部分智能监测机柜:防水、防尘、防腐蚀设计,适应各种环境。内置多参数传感器(pH、溶解氧、浊度、温度、氨氮、COD等)。支持多种通信方式(4G/5G、LoRa、NB-IoT、Wi-Fi、有线网络)。低功耗设计,支持太阳能供电。辅助设备:太阳能供电系统(适用于野外部署)。安装支架(壁挂或立式安装)。防雷、防浪涌设备。2.2软件部分数据采集与传输系统:实时采集水质数据,并通过通信模块传输至云端或本地服务器。智能分析平台:数据可视化:生成图表、曲线和报告,支持多维度分析。智能预警:设置阈值,水质超标时自动触发预警。历史数据查询:支持长期数据存储和回溯。远程控制与维护系统:远程设置设备参数、校准传感器。监控设备运行状态,及时发现故障。甘肃工业废水水质监测站水质出现异常时快速采取措施。

赛融智能户外水质监测柜,结合了先进的在线分析仪表和智能化系统平台。保证仪表持续稳定安全运行的同时,通过智能监控及运维App,让用户可以随时随地查看监测点水质、设备运行情况并远程控制,做到了真正的无人值守。推动水务工作更加高效化、科学化、规范化。柜内所有信号都可在移动端随时随地查看,支持远程控制、实时监控、地图监测、报警信息、历史数据查询、数据报表、运维管理等模块化功能。系统配备了诊断系统,确保水质监测准确迅速、运行稳定可靠。
水污染主要来源于人类生产和生活活动产生的工业、农业废水和生活污水。据统计,全世界每年约有4200多亿立方米的污水排入江河湖海,污染了5.5万亿立方米的淡水。古往今来,人类逐水而居,文明伴水而生。水污染会造成生物的减少或灭绝,破坏生态环境。人类不洁饮水,也会引发多种传染病,如霍乱、伤寒、痢疾等。节约水资源、减少水污染已迫在眉睫。赛融水质自动监测站适用于各种类型的水体监测场地,包括水产养殖池、河道监测、污水监测、湖泊监测、海水监测等,可以实时或周期性不间断连续监测水体的各项水质参数。采样时,应避开表面油污、漂浮物、悬浮异物、水草等,不得搅动水底沉积物 ,避免影响样品的真实代表性。

赛融科技深耕水质监测技术,服务客户涵盖了包括农业、应急、环保等多个领域,在水质监测方面积累了丰富的项目经验及市场应用经验。自主研发的高性能水质监测站,用物联网平台系统集成先进的物联网传感器和数据传输技术,具有实时监测、智能分析、及时预警、集成监控功能。产品运行可靠、操作简单、应用灵活等特点,为水资源保护提供科学决策的依据,被广泛应用于地下水、地表水、工业污水、农业水产、养殖及尾水、城市雨污水等场景。水质在线自动监测系统主要由采配水单元、控制单元、仪器设备单元等设施构成。可应用在河流、湖泊、水库。山东工业废水水质监测物联通
变送输出4-20mA、RS485通信输出等各种变量输出,系统智能控制;湖北模块化单元水质监测
水质数据实时监测通过物联网传感器集成实时监控和数据传输,对多采水点水质状况进行实时监测与记录,反映水质变化。产品可形成实时线性数据,不符合标准时进行告警、为建立数据大模型及数据分析提供基础数据。多流路水质监测针对市面上水质监测产品只能监测一个监测点位的情况,赛融水质监测站可以实现多流路或多水域水质监测。通过布管,将附近几百米内的多个水质监测点的水样进行采集,用一套设备进行多点监测。既可实现对同一水域多个采水点进行监测,也可以采用同一设备监测临近多水域,有效降低监测成本。湖北模块化单元水质监测
随着全球气候变暖加剧,极端天气事件频发,城市内涝已成为许多城市面临的严峻挑战。面对这一挑战,人们发现既有预测预警技术手段尚存不足。为了有效应对城市内涝,需要依靠更加先进的预测预警技术,并结合对历史数据的深度处理和分析。通过安装高精度、实时性强的水位、流量和水质传感器,可以实时监测城市排水管网和关键区域的水情变化,捕捉微小的水位波动和流量变化,为内涝防控提供准确的基础数据。同时,结合遥感技术、地理信息系统(GIS)和气象雷达等先进手段,可以对城市地表水信息、降雨情况进行监测,进一步提高预测的准确性和时效性。利用大数据技术和人工智能算法,可以对历史数据进行深度挖掘和关联分析,揭示出内涝与降雨量、排...