BOD简称生化需氧量。是指在规定的条件下,微生物分解一定体积水中的某些可被氧化物质,特别是有机物质所消耗的溶解氧的数量。在BOD的测量中,通常规定使用20℃、5天的测试条件,并将结果以氧的浓度(mg/L)表示,记为五日生化需氧量(BOD5)。它是反映水中有机污染物含量的一个综合指标。COD是以化学方法测量水样中需要被氧化的还原性物质的量。水样在一定条件下,以氧化1L水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的质量(mg),以mg/L表示。它反映了水中受还原性物质污染的程度。该指标也作为有机物相对含量的综合指标之一。利用大数据、物联网、人工智能等技术实现过程分析、预测预警及量化监管。四川物联网传感水质监测物联通

我国水环境监测的数据服务功能较为单一,只侧重于提供某些特定污染物的监测数据或满足某一类环境管理需求。然而,水环境问题往往是多因素、多过程、多空间尺度交织的复杂问题,单一的监测数据或目标难以满足反映水体环境整体健康状况的需求。例如,虽然污水处理厂出水重点监测COD、氨氮等指标,但是其所含的抗性基因、菌落结构会对受纳水体的生态安全同样具有重要影响,而这些指标往往未被纳入监测范围。系统性思维则强调从整体和全局的角度进行水环境监测和管理。它要求在监测设计中考虑到水体的多功能性和复杂性,不仅要监测污染物,还要监测生态系统的各个组成部分和功能状态。此外,系统性思维还要求在监测中综合考虑空间和时间维度,既要关注水体的当前状态,还要关注其长期变化趋势以及不同区域之间的相互影响。山东移动端集成水质监测监测数据评估排水管网的维护和升级成效,优化排水管道系统,为污水调配提供支持。

质量控制(qualitycontrol,QC)是水质监测质量保证的一个部分,它包括实验室内部质量控制和外部质量控制两个部分。实验室内部质量控制是实验室自我控制质量的常规程序,它能反映分析质量的稳定性,以便及时发现分析其中的异常情况,随时采取相应的校正措施。其内容包括空白试验、校准曲线核查、仪器设备的定期标定、平行样品分析、加标样品分析、密码样品分析和编制质量控制图等。外部质量控制通常是由常规监测以外的监测中心站或其他有经验的人员执行,以便对数据质量进行评价,及时校正,提高监测质量。常用的方法有分析标准样品以进行实验室之间的评价和分析测量系统的现场评价等。
水质评价是水环境质量评价的简称,是根据水的不同用途,选定评价参数,按照一定的质量标准和评价方法,对水体质量定性或定量评定的过程。其目的在于准确地反映水质的情况,指出发展趋势,为水资源的规划、管理、开发、利用和污染防治提供依据。水质评价是环境质量评价的重要组成部分,其内容很广,工作目的不同,研究的角度不同,分类的方法不同。1.按评价阶段分类(1)回顾评价:根据水域历年积累的资料进行评价,以揭示该水域水质污染的发展变化过程。(2)现状评价:根据近期水质监测资料,对水体水质的现状进行评价。水质监测(3)预断评价:又称影响评价,根据地区的经济发展规划对水体的影响,预测水体未来的水质状况。日志信息丰富,便于故障分析。

水质监测的分析方法有很多,经典分析方法包括重量分析法和滴定分析法两种,此外还有仪器分析法等新兴分析方法,如原子色谱分析法、分光光度法等。重量分析法比较原始笨拙,它是利用仪器先将待测样品进行组分分离,各组分分离后利用分析天平对各组分进行称量,以重量为依据对样品进行水质分析。通过不同的分离方式,重量分析法又可以分为直接分离法和气化法两种。直接分离法是将样品直接以液态方式分离,而气化法则是通过溶液中组分间沸点的差异气化分离。重量分析法不需要精密仪器,操作也较简单,一般运用于浓度较高的组分测试,不能用于微量元素的测定。监测、质控和运行数据更好地为环境管理和企业运行服务。广东工业废水水质监测5G物联网络
城市河道的污染主要来自生活污水、工业污水、农业污水和雨水四大类。四川物联网传感水质监测物联通
随着全球气候变暖加剧,极端天气事件频发,城市内涝已成为许多城市面临的严峻挑战。面对这一挑战,人们发现既有预测预警技术手段尚存不足。为了有效应对城市内涝,需要依靠更加先进的预测预警技术,并结合对历史数据的深度处理和分析。通过安装高精度、实时性强的水位、流量和水质传感器,可以实时监测城市排水管网和关键区域的水情变化,捕捉微小的水位波动和流量变化,为内涝防控提供准确的基础数据。同时,结合遥感技术、地理信息系统(GIS)和气象雷达等先进手段,可以对城市地表水信息、降雨情况进行监测,进一步提高预测的准确性和时效性。利用大数据技术和人工智能算法,可以对历史数据进行深度挖掘和关联分析,揭示出内涝与降雨量、排水管网、地形地貌等因素之间的复杂关系,为城市内涝的预测和及时预警提供有力支持。四川物联网传感水质监测物联通
随着全球气候变暖加剧,极端天气事件频发,城市内涝已成为许多城市面临的严峻挑战。面对这一挑战,人们发现既有预测预警技术手段尚存不足。为了有效应对城市内涝,需要依靠更加先进的预测预警技术,并结合对历史数据的深度处理和分析。通过安装高精度、实时性强的水位、流量和水质传感器,可以实时监测城市排水管网和关键区域的水情变化,捕捉微小的水位波动和流量变化,为内涝防控提供准确的基础数据。同时,结合遥感技术、地理信息系统(GIS)和气象雷达等先进手段,可以对城市地表水信息、降雨情况进行监测,进一步提高预测的准确性和时效性。利用大数据技术和人工智能算法,可以对历史数据进行深度挖掘和关联分析,揭示出内涝与降雨量、排...