农业水产养殖及尾水水质监测场景在现代水产养殖中,水质直接关系到鱼、虾、蟹的健康生长和水产品的质量安全。赛融科技水质监测站,通过多路多指标监测,提供养殖场水质连续数据,可实现实时监控水质质量。需求问题:a.水质变化快,难以实时掌握b.人工监测效率低,容易出错c.水质问题发现不及时,造成损失主要功能:a.实时监测,预警及时b.数据准确,分析准确c.智能控制,省心省力d.水温、溶解氧、氨氮、浊度、pH值等常规指标监测、亚硝酸盐、总碱度、COD、盐度、ORP等专业指标监测、叶绿素A等指标监测e.多点位、多水层数据采集f.数据分析、预警、报表生成。主要功能:a.实时监测,预警及时b.智能控制,省心省力c.水温、溶解氧、氨氮、浊度、pH值等常规指标监测、亚硝酸盐、总碱度、COD、盐度、ORP等专业指标监测、叶绿素A等指标监测d.多点位、多水层数据采集f.数据分析、预警、报表生成方案优势:a.提升养殖效率,提高产量b.保障水产品质量安全c.降低养殖风险,减少损失d.实现科学养殖,促进绿色发展适用场景:a.鱼虾蟹等各种水产养殖b.水产育苗基地c.水族馆、观赏鱼养殖箱体布局合理,维护方便;浙江水质监测平台

关键功能与创新技术实时监测与智能预警24小时连续监测关键参数(pH、溶解氧、浊度等),数据精度误差低于3%。AI算法(如自回归模型、机器学习)预测水质恶化趋势,触发阈值报警,推送至手机或管理平台。数据管理与分析支持历史数据存储、报表生成(日报/月报/年报)及跨区域对比分析。区块链技术用于数据存证,确保监测结果不可篡改,满足环保执法需求。远程控制与自动化运维通过云平台远程操控设备(如水泵、闸门),实现无人值守。模块化设计(如浮标监测站)支持快速部署与扩展。北京水质监测物联通合物联网、大数据、总控模型等先进技术,实时监测和科学预测运行状况,实现智能化管理,提升区域管理水平。

工业生产污水水质监测场景各类废水、污水排放是环境污染的重要源头,偷排漏排事件屡禁不止,严重威胁着生态环境和人民健康。如何加强排污监管,实时掌握企业排污状况,成为环境治理的重中之重。需求问题:a.偷排漏排事件频发b.传统监测手段滞后c.污染溯源难度大主要功能:a.实时监测\预警b.数据可靠,证据确凿c.智能分析,辅助决策方案优势:a.实时监测,及时预警,有效遏制偷排漏排行为。b.数据准确可靠,为环保执法提供有力证据。c.智能分析,辅助决策,提升环境管理水平。适用场景:a.环保部门对工业企业排污的在线监测与监管。b.企业自身的环境管理和污染治理。工业园区、经济开发区等区域环境监测。
尽管我国在水环境监测数据的获取方面取得了进展,但在数据的管理、分析和利用方面依然存在水平低、滞后的问题。大量数据被收集后,往往因数据管理系统不完善、数据共享机制不足、分析手段落后等原因,未能充分发挥其潜在价值。数据的存储、整理和标准化不足,导致不同地区、不同机构之间的数据格式、标准不统一,数据质量参差不齐,难以进行有效的整合和比较。收集到的监测数据往往没有被及时地深度分析,其利用主要停留在简单的统计和报告阶段。面对复杂的环境问题,需要通过数据挖掘、大数据分析、机器学习等先进分析技术,从数据中揭示规律和趋势,指导环境管理和决策。当前,这些先进技术在我国水环境监测中的应用还处于起步阶段。依托大数据与人工智能技术,建立综合水环境决策支持平台。

多参数水质监测仪是一种集多种水质参数监测功能于一体的先进设备。它具有小巧轻便的特点,操作起来也十分简单,能够又快又准地测量出水中的多项指标,像COD、氨氮、总氮、总磷、磷酸盐、硝酸盐氮、亚硝酸盐氮、高锰酸盐指数、浊度、色度、悬浮物、溶解氧、pH等等。这些指标可是衡量水质好坏的关键依据,对保障我们的饮用水安全、控制工业废水排放以及监测水体环境等方面,都有着至关重要的意义。目前已经成为水质监测中不可或缺的重要工具。监测数据评估排水管网的维护和升级成效,优化排水管道系统,为污水调配提供支持。江苏双碳协同水质监测平台
集数据采集、处理和传输于一体,可靠性高,成本低;浙江水质监测平台
当前我国地表水执行的标准是《地表水环境质量标准》(GB3838-2002);地下水执行的标准是《地下水质量标准》(GB/T14848-2017);生活饮用水执行《生活饮用水卫生标准》(GB5749-2022)。常见的自来水属于生活饮用水,执行GB5749-2022标准。我国颁布实施的《生活饮用水卫生标准》(GB5749-2022)规定生活饮用水检验检测指标分为常规指标43项和扩展指标54项。07日常怎么保护水资源?(1)节约用水:随手关闭水龙头,使用水龙头时注意水量,不宜开得过大,一水多用(如淘米水、洗菜水用作浇花),减少淋浴时间。(2)不向江河湖海倾倒生活垃圾,未经处理的污水。(3)提倡废水回收再利用。浙江水质监测平台
随着全球气候变暖加剧,极端天气事件频发,城市内涝已成为许多城市面临的严峻挑战。面对这一挑战,人们发现既有预测预警技术手段尚存不足。为了有效应对城市内涝,需要依靠更加先进的预测预警技术,并结合对历史数据的深度处理和分析。通过安装高精度、实时性强的水位、流量和水质传感器,可以实时监测城市排水管网和关键区域的水情变化,捕捉微小的水位波动和流量变化,为内涝防控提供准确的基础数据。同时,结合遥感技术、地理信息系统(GIS)和气象雷达等先进手段,可以对城市地表水信息、降雨情况进行监测,进一步提高预测的准确性和时效性。利用大数据技术和人工智能算法,可以对历史数据进行深度挖掘和关联分析,揭示出内涝与降雨量、排...