答;可控硅有两种叫法,精细一点叫晶闸管。常用的电力半导体器件有;普通可控硅(SCR)、门极(GTO)关断可控硅、电力可控硅(GTR)、电力MoS场效应晶体管(MosFET)、绝缘栅双极型晶体管、(lGBT)、Mos栅控可控硅等等。可控硅模块;是根据不同的用途与技术要求,将单向可控进行组合。两只单向可控硅的串联(一只的阳极A与另一只的阴极K相接)这样就组成了一个可控硅模块。常用于大功率三相桥式、单相桥式整流电路之中。两只单相可控硅反向并联(就是一只的阳极A与另一只的阴极K联接,另一端点一只阴极k与一只阳极A相接)组成一只双向可控硅模块。常用于大功率三相或单相交流调压电路中。例如软启动器中改变电压控制电动机启动的电路中。无论是什么结构,它们的控制端都是由阴极K与门极G有二根线引出来控制的。下面简述一下GT0门极可关断可控硅的组成。见下面图门极可关断晶闸管简称可关断晶闸管,用GTO表示。它是一种耐高电压大电流全控器件。它属全控型三端器件。GT0可控硅的基本结构与普通可控硅ScR类似,它的三个极也是阳极A、阴极k、门极G。其内部结构及符号如上图所示。其阳极伏安特性如下图所示。当阳极加有正电压、阴极加有负电压时。 反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。重庆西门康SEMIKRON可控硅销售厂家
可控硅模块的分类可控硅模块从X芯片上看,可以分为可控模块和整流模块两大类,从具体的用途上区分,可以分为:普通晶闸管模块(MTC\MTX)、普通整流管模块(MDC)、普通晶闸管、整流管混合模块(MFC)、快速晶闸管、整流管及混合模块(MKC\MZC)、非绝缘型晶闸管、整流管及混合模块(也就是通常所说的电焊机模块MTG\MDG)、三相整流桥输出可控硅模块(MDS)、单相(三相)整流桥模块(MDQ)、单相半控桥(三相全控桥)模块(MTS)以及肖特基模块等。福建西门康SEMIKRON可控硅推荐货源可控硅导通后,当阳极电流小干维持电流In时.可控硅关断。
4、控制极触发电流Ig1、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的小控制极电流和电压。5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的小阳极正向电流。许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。可控硅工作原理在分析可控硅工作原理时,我们经常将这种四层P1N1P2N2结构看作由一个PNP管和NPN管构成,如下图所示。当阳极A端加上正向电压时,BG1和BG2管均处于放大状态,此时由控制极G端输入正向触发信号,使得BG2管有基极电流ib2通过,经过BG2管的放大后,其集电极电流为ic2=β2ib2。而ic2沿电路流至BG1的基极,故有ib1=ic2,电流又经BG1管的放大作用后,得到BG1的集电极电流为ic1=β1ib1=β1β2ib2。此电流又流回BG2的基极,使得BG2的基极电流ib2增大,从而形成正向反馈使电流剧增,进而使得可控硅饱和并导通。由于在电路中形成了正反馈,所以可控硅一旦导通后无法关断,即使控制极G端的电流消失,可控硅仍能继续维持这种导通的状态。
只有可控硅模块能够满足上述条件,才能说明可控硅模块是质量的。当然,判断起来也非常简单,只需要使用万用表的欧姆档测量可控硅的极间电阻。具体的做法就是:用R×1k或R×10k挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。电阻值越大,表明正反向漏电电流愈小。如果测得的阻值很低,或近于无穷大,说明可控硅已经击穿短路或已经开路,此可控硅不能使用了。接着就是检测可控硅模块的三个PN结是否完好或者损坏,可以用万用表的R×1k或R×10k挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上,若电阻值很小表明可控硅击穿短路。用R×1k或R×100挡,测控制极和阴极之间的PN结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结已经损坏。反向阻值应很大,但不能为无穷大。正常情况是反向阻值明显大于正向阻值。基本上来说,通过以上方法就能够判断出可控硅模块的好坏了。 可控硅模块的发展历史比较悠久,发展到现代它的特点有很多,可应用的范围也非常广。
其闸流特性表现为当可控硅加上正向阳极电压的同时又加上适当的正向控制电压时,可控硅就导通;这一导通即使在撤去门极控制电压后仍将维持,一直到加上反向阳极电压或阳极电流小于可控硅自身的维持电流后才关断。普通的可控硅调光器就是利用可控硅的这一特性实现前沿触发相控调压的。在正弦波交流电过零后的某一时刻t1(或某一相位角wt1),在可控硅控制极上加一触发脉冲,使可控硅导通,根据前面介绍过的可控硅开关特性,这一导通将维持到正弦波正半周结束。因此在正弦波的正半周(即0~p区间)中,0~wt1范围可控硅不导通,这一范围称为控制角,常用a表示;而在wt1~p间可控硅导通,这一范围称为导通角,常用j表示。同理在正弦波交流电的负半周,对处于反向联接的另一个可控硅(对两个单向可控硅反并联或双向可控硅而言)在t2时刻(即相位角wt2)施加触发脉冲,使其导通。如此周而复始,对正弦波每半个周期控制其导通,获得相同的导通角。如改变触发脉冲的施加时间(或相位),即改变了导通角j(或控制角a)的大小。导通角越大调光器输出的电压越高,灯就越亮。从上述可控硅调光原理可知,调光器输出的电压波形已经不再是正弦波了,除非调光器处在全导通状态。 早是在1970年由西门康公司率先将模块原理引入电力电子技术领域。湖南代理西门康SEMIKRON可控硅工厂直销
采用模块封装形式,具有三个PN结的四层结构的大功率半导体器件。重庆西门康SEMIKRON可控硅销售厂家
一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。我们可以把从阴极向上数的、二、三层看面是一只NPN型号晶体管,而二、三、四层组成另一只PNP型晶体管。其中第二、第三层为两管交迭共用。可画出图1的等效电路图。当在阳极和阴极之间加上一个正向电压E,又在控制极G和阴极C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基极电流Ib2,经放大,BG2将有一个放大了β2倍的集电极电流IC2。因为BG2集电极与BG1基极相连,IC2又是BG1的基极电流Ib1。BG1又把Ib1(Ib2)放大了β1的集电极电流IC1送回BG2的基极放大。如此循环放大,直到BG1、BG2完全导通。事实上这一过程是“一触即发”的,对可控硅来说,触发信号加到控制极,可控硅立即导通。导通的时间主要决定于可控硅的性能。可控硅一经触发导通后,由于循环反馈的原因,流入BG2基极的电流已不只是初始的Ib2,而是经过BG1、BG2放大后的电流(β1*β2*Ib2),这一电流远大于Ib2,足以保持BG2的持续导通。此时触发信号即使消失,可控硅仍保持导通状态,只有断开电源E或降低E的输出电压,使BG1、BG2的集电极电流小于维持导通的小值时,可控硅方可关断。当然,如果E极性反接。 重庆西门康SEMIKRON可控硅销售厂家