图书馆的发展历经传统图书馆、数字图书馆、智慧图书馆三阶段,相应的图书馆服务亦经历文献服务、信息及知识服务、智能服务三阶段。智慧图书馆依托数智技术(主要有大数据、人工智能等)、融合图书馆资源的全流程管理体系,面向用户多样化、个性化、专业化需求实现数据资源与数智技术有机整合、虚实空间有效融合以提供效益比较大化的数智服务(主要分技术服务及公共服务),由此要求图书馆数智服务平台需具备感知化、泛在化、协同化的特征:感知化是针对特定的应用场景选择适配的服务方案,通过交互终端及交互门户以合适的交互方式实现服务情境、用户行为等智能感知;泛在化是基于数智技术打破时间与空间的服务边界,可跨空间实时提供资源间共享、领域间互联的多元化、多层次服务;协同化是协调图书馆业务运行涉及的多方主体(社会公众、社会机构、图书馆馆员等)利益,充分发挥多方主体智慧实现数据资源、数智技术、实体空间、服务系统等图书馆要素高效协同运作。在语义关联矩阵中,由起始入口词选择任意某个兴趣点,系统会找出两者之间潜在的5条隐性知识链路。网络智慧导读简介
在数智时代,图书馆的智慧服务体系极大地丰富了图书馆与用户的互动,提升了阅读体验和用户满意度,使得传统的图书馆服务演变为更加互动和个性化的智能服务。一方面,通过整合人工智能和自然语言处理等技术,图书馆得以实现与用户更丰富和深入的互动。例如,智能聊天机器人能够实时为用户提供阅读建议,乃至解析复杂信息,这种即时反馈机制不仅提高了用户获取信息的效率,还极大地优化了服务体验;另一方面,智慧服务体系通过分析用户互动数据来学习用户行为,预测需求,并主动为其提供服务,这种服务的主动性依托于大数据和预测分析技术,可以使服务更智能、更个性化。总之,数智时代图书馆构建的智慧服务体系简化了信息获取过程,创造了一种全新的与高度互动的阅读和学习方式,提升了用户的满意度和阅读体验,体现了数智时代图书馆服务的独特价值。网络智慧导读简介智慧导读可以提供多种形式的辅助阅读,如注释、翻译等。
面向数智环境下图书馆数智服务的全要素精细感知、复杂资源有效融合、多服务高效协同等需求,结合IT规划参考模型,系统分析智慧图书馆的前沿研究与实践,充分融合智慧数据的演进范式及迭代模式,以数据治理体系为基础、数智技术体系为赋能智慧数据流通转化过程及图书馆数智服务流程,通过层次化、模块化、组件化的方式,分人机交互层、数智服务层、业务层、数据存储层、标准规范层、基础设施层构建融合智慧数据的图书馆数智服务平台。
首先,智慧导读系统会收集用户在阅读过程中的各种数据,包括但不限于用户的阅读时长、阅读偏好、阅读历史、点击行为、评论反馈等。这些数据可以通过用户在平台上的行为自动记录,也可以通过用户主动填写问卷或设置偏好等方式获取。收集到的原始数据可能包含噪声、重复或无效信息,因此需要进行数据清洗和预处理。这一步包括去除重复数据、填充缺失值、转换数据格式等操作,以便进行后续的数据挖掘工作。利用机器学习和数据分析技术,对用户数据进行深度挖掘。这包括对用户的阅读习惯、兴趣偏好、情感倾向等进行分析,发现用户潜在的阅读需求和兴趣点。同时,通过对用户数据的聚类、分类和关联规则挖掘等,可以发现用户群体之间的相似性和差异性,为后续的推荐算法提供依据。图书馆的数字文献知识服务通常是由图书馆采购数字文献资源,读者分别各自访问一个个的文献数据库。
数字阅读平台成为信息信任问题发生和解决的集中站。联结技术和人的智慧阅读方式由数字阅读平台提供,表现为各种实体或虚拟的阅读工具。数字阅读平台作为阅读工具的提供者,不仅需要改进搜索和过滤技术,提升读者的阅读效率和阅读体验,还需要构建在线网络,成为分布式内容生成和分布式阅读的集散地。数字阅读平台主导的社会化阅读成为主流阅读形态[15],读者虚拟社群与实体社会关系网络重合,引发关系信任、隐私保护等新的问题。这些问题本质上是952025年第3期总第477期学研VIEWONPUBLISHING社会学问题,即人与人之间关系、人与组织之间关系的问题,只是因为机器作为人和组织的延伸,使得这一问题的规模更大、更复杂。为了给用户提供针对性的高效知识服务,重点探讨用户阅读行为知识。网络智慧导读简介
智慧导读可以帮助读者更快速、更深入地理解文章。网络智慧导读简介
智慧导读是基于人工智能技术的原理,通过运用大数据和机器学习等技术手段,对用户的阅读行为、兴趣偏好、历史记录等数据进行深入分析和挖掘,建立相应的推荐算法模型,从而为用户提供个性化的阅读推荐服务。智慧导读会根据用户的阅读习惯和兴趣偏好,自动分析并推荐符合用户需求的文章、新闻、书籍等内容。这种个性化推荐不仅能够帮助用户更快速地获取到自己感兴趣的内容,提高阅读效率,同时也能够增强用户的阅读体验,提升用户的满意度和忠诚度。网络智慧导读简介