核磁共振技术是利用岩石等多孔介质内部流体中H原子的核磁共振信号强度与流体体积成正比这一特性来实现岩石微观孔隙结构测量,T2图谱是核磁共振测得的直观结果之一。对于均质的纯净物,发生核磁共振时其内部每个原子核与周围环境的相互作用基本相同,因此可以用一个单一的弛豫时间T来表征被测样品的物性特征。而对于岩石这种多孔介质而言,情况要复杂的多。岩石矿物含量与构成不一,孔隙内的流体被岩石骨架分割在大小形状不一的孔道内,每个原子核与固体表面的接触机会不一样,导致每个原子核弛豫被加强的几率不等,因此,储层岩石内的流体弛豫不能用单一的弛豫时间来描述,而应当是一个分布。不同类型岩石内不同流体决定了各自具有不同的弛豫时间分布。水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对混泥土水化养护进行分析。一站式磁共振水泥基材料-土壤-岩芯等多孔介质产品介绍
规格化FID法(Normalization method)用于冻土未冻水含量的测量 传统利用FID信号的FIRST数据点进行冻土中未冻水含量的测量的方法,由于FID的First数据点的信号强度包含冻土中冰的信号,所以测得的未冻水含量远高于实际的未冻水含量。为了降低该影响,可使用规格化FID法(Normalization method)测量冻土中的未冻水含量。 规格化FID法的前提条件为:1. FID的信号强度与冻土中的未冻水含量成正比;2. 任何低于冰点的温度下的FID信号强度与任意一高于冰点的参考温度的FID信号强度的比值(FID信号强度的差值与温度的差值的比)恒定不变。无损伤水泥基材料-土壤-岩芯等多孔介质仪器定制服务水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可用于天然气在岩芯中的各种状态(孔隙气凝结气)检测分析。
纵向弛豫(T1)和横向弛豫(T2)是由质子之间的磁相互作用引起的。从原子的角度来看,当一个进动的质子系统将能量传递给周围环境时,弛豫就发生了。供体质子弛豫到它的低能态,在低能态中质子沿着B0的方向进动。同样的转移也有助于T2弛豫。此外,消相有助于T2松弛,而不涉及向周围环境转移能量。因此,横向弛豫总是比纵向弛豫快;因此,T2总是小于等于T1。·对于固体中的质子,T2比T1小得多。·对于流体中的质子:(1)当流体处于均匀静磁场时,T1近似等于T2。(2)当流体处于梯度磁场并采用CPMG测量过程时,T2小于T1,其差异主要受磁场梯度、回波间距和流体扩散率的控制。当润湿流体填充多孔介质(如岩石)时,T1和T2都急剧减小,并且弛豫机制不同于固体或流体中的质子。
随着种植年限的增长,小峰面积呈现消减的趋势,主峰面积呈现增加的趋势。综合研究区各类型土壤吸持自由水和束缚水比重随转化时间的变化特征可知,总体来讲,耕层土壤吸持自由水的性能降低,吸持束缚水的性能提高,土壤吸持水分的有效性下降。这可能是由于大棚土壤耕作次数较少,且多为浅耕,肥料多为表施,灌水次数多,土壤长期保持湿润状态,使得土壤非水稳性团粒结构遭受破坏,通透性变差;无降水、高蒸发量的环境条件导致盐分上升累积,造成土壤板结退化,继而降低了耕层土壤水分的吸持性能。水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可用于土壤水分物性研究(冻土未冻水研究、水分迁移研究)。
低场时域核磁共振技术用于土壤中水分的运动机制研究 土壤作为一种包含多中成分:多种矿物质、多种有机质的复杂非稳态的多孔介质,其吸水后,水分的渗透机理与典型稳态多孔介质中水分的渗透机理相违背,而是先进入大孔,进入微孔则是一个缓慢、漫长的过程,这说明水分与土壤中的部分组分相互作用,从而改变了土壤的微观结构。典型的解释是:土壤吸水后,水分与土壤中的有机质相互作用,形成“凝胶相”,打开土壤中的微孔系,从而吸水膨胀。但内在机理有待进一步研究。 基于低场时域核磁共振技术,通过对土壤样品的各个单独组分(如蒙脱石、腐殖酸)及全土吸水后的弛豫时间测量和分析,得出:土壤中的水分进入微孔之所以是一个缓慢、漫长的过程,主要是因为土壤渗透如有机质和矿物颗粒的结合界面、破坏有机质和矿物颗粒之间的相互作用,从而使土壤中形成凝胶相,并打开矿物颗粒(蒙脱石粘土)的微孔系的时间较长。 MAGMED-Soil-2260磁共振土壤分析仪,能够精确、全力的采集土壤样品中所有孔径对应的弛豫时间信号,优化的软硬件配置,满足长时间在线测量要求,重复性好,为土壤中的水分运动机制研究提供一种精确、快速、方便的分析途径。低场核磁共振是一种正在兴起的快速无损检测技术。具有测试速度快,灵敏度高、无损、绿色等优点。一站式磁共振水泥基材料-土壤-岩芯等多孔介质产品介绍
水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对水泥基材料的水分含量和水分分布进行研究。一站式磁共振水泥基材料-土壤-岩芯等多孔介质产品介绍
水泥水化反应几分钟后,核磁共振纵向弛豫时间分布呈现两个峰,一个是在100ms附近,反映水泥颗粒周围自由水的弛豫信息;另一个是在2ms附近,反映水泥凝结之前包裹在絮凝结构中水的弛豫信息。研究发现,水泥水化进程中极长弛豫时间随时间的变化呈现出5个阶段,正好与水泥水化反应的初始反应、诱 导期、加速期、减速期和稳定期相对应。 通过质子横向弛豫来反映白水泥浆体的水化进程,发现从加水开始15min到200h,水泥浆体水化过程中出现5种不同的自旋质子群。研究中用自旋-自旋弛豫时间和信号量百分比来表征不同种类的自旋质子群,以此来监测水泥浆体的水化进程,观测研究结果与通过其它途径测得的结果呈现良好一致性,证明了用核磁共振来研究水泥水化的可靠性。一站式磁共振水泥基材料-土壤-岩芯等多孔介质产品介绍