新型高效混合澄清槽是在原有的萃取槽基础上升级改造的,新型设备结合传统设备效率低、耗能大、反应速度慢等缺点。萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。传质单元数表示过程分离难易的程度。萃取的方法多样,包括液-液萃取(或抽提)、液-固萃取(或浸取)、气-液萃取和气-固萃取等。沈阳连续萃取设备
在液-液萃取过程中,有机相、水相、乳化物和外力是乳化形成的主要因素,如果破坏乳化形成的条件就可以防止和避免乳化的形成。诸如,在脏器、血液等生物样品的萃取前,在研钵中先加入等量的无水硫酸钠与样品同时研磨,直至干沙状后,经有机溶剂萃取就不会发生乳化现象,而且可获得较高的萃取效率。但本法不适用溶液萃取。在水溶液样品中加入氯化钠使之饱和,再用有机溶剂萃取可有效地防止因为有机相与水相比重接近易引起的乳化现象。如果样品出现轻度乳化(两相间形成一薄乳化层),可使用玻璃棒搅动乳化层,削弱乳化物分子的吸附作用;或者使用细金属丝与容器壁摩擦,破坏胶体粒子的双电层。这种方法能消除轻度乳化,既简单又避免了杂质的引入。由于乳浊液是液体杂质以微小珠滴散布在液体溶剂中的一种分散体系,是热力学不稳定体系,如果将其静置一定的时间后,可自然分层。此种方法比较费时间,但是不会引入杂质。安徽有机溶剂萃取为了提高萃取率,可以采用多种方法。
液-液萃取常用于样品中被测物质与基质的分离,在两种不相容液体或相之间通过分配对样品进行分离而达到被测物质纯化和消除干扰物质的目的。在大部分情况下,一种液相是水溶剂,另一种液相是有机溶剂。可通过选择两种不相容的液体控制萃取过程的选择性和分离效率。在水和有机相中,亲水化合物的亲水性越强,憎水性化合物将进入有机相中的程度就越大。通常,分析化学家首先在有机溶剂中分离出感兴趣的被测物质,然后,由于常用的溶剂具有较高的蒸气压,可以通过蒸发的方法将溶剂除去,以便浓缩这些被测物质。
20世纪40年代后期,生产核燃料的需要促进了萃取的研究开发。现今萃取通用于石油炼制工业,并普遍应用于化学、冶金、食品和原子能等工业。如,萃取已应用于石油馏分的分离和精制,铀、钍、钚的提取和纯化,有色金属、稀有金属、贵重金属的提取和分离,抗细菌素、有机酸、生物碱的提取,以及废水处理等。方法,向待分离溶液(料液)中加入与之不相互溶解(至多是部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别,使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。萃取相关规律:有机溶剂易溶于有机溶剂,极性溶剂易溶于极性溶剂,反之亦然。
有机溶剂易溶于有机溶剂,极性溶剂易溶于极性溶剂,反之亦然。萃取在如下几种情况下应用,通常是有利的:①料液各组分的沸点相近,甚至形成共沸物,为精馏所不易奏效的场合,如石油馏分中烷烃与芳烃的分离,煤焦油的脱酚;②低浓度高沸组分的分离,用精馏能耗很大,如稀醋酸的脱水;③多种离子的分离,如矿物浸取液的分离和净制,若加入化学品作分部沉淀,不但分离质量差,又有过滤操作,损耗也大;④不稳定物质(如热敏性物质)的分离,如从发酵液制取青霉素。如在体系中加入另一种萃取剂,起辅助萃取作用,该萃取剂称为助萃剂。安徽有机溶剂萃取
料液和各级萃余液都与新鲜的萃取剂接触,可有较高的萃取率。沈阳连续萃取设备
如果KD值小或者需要的样品量大,多次萃取是不实际的。根据式(10-2-3)可能会需要很多的萃取次数,并且萃取的总体积也太大。在某些情况下,萃取的动力学可能是很慢的,需要很长时间才能建立平衡。在这些情况下,可以使用连续液-液萃取技术。在连续液-液萃取中,新鲜的有机溶剂可以循环地连续使用,通过含有被萃取的水相。图10-2-1表明一个连续液-液萃取器的结构,使用比水重的有机溶剂进行萃取。这种萃取溶剂从烧瓶中被加热蒸馏,上升到冷凝器被冷凝,并淋漓出两种不混合的水和带有萃取物的溶剂。较后,溶剂和萃取物返回到烧瓶中。此过程连续地进行直到足够量的被测物质被萃取出来。在某些模块中,烧瓶也作为浓缩器使用,连续萃取之后便于蒸发和除去萃取溶剂。沈阳连续萃取设备