传统的液-液萃取需要大量的手工操作,当样品负荷增加,并超过了合理的程度,人们就会考虑自动化。许多仪器厂家研制了全部自动或者部分自动地完成样品萃取和浓缩的装置。某些气相色谱或者高压液相色谱的自动进样器和工作站可以完成自动液!液萃取过程。这种自动系统大多应用于液体易于分散和混合的体系,在小样品瓶中进行液-液萃取。某些自动化系统通过自动进样器针头交替地抽取和注入溶剂和样品的方法在小样品瓶中进行液-液萃取。也有这样的装置,使用涡流混合的方法使样品瓶高速旋转,完成液-液萃取。然后静置样品瓶,直等到样品瓶中液体分层分离时,通过控制自动进样器的针头长度,或者抽取上层或者下层液体进行仪器分析测定。此种方法通常处理小体积的样品(ml水平),对于大体积样品的液-液萃取处理还需要进行改进,诸如1L水样品(美国EPA要求的方法)的液-液萃取。使有机相与水相分离。萃取的设备研发费用
超临界流体萃取过程简介:将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来。河北工业萃取厂家萃取剂是决定萃取塔使用效果的关键。
与所有声波一样,超声波在不均匀介质中传播也会发生散射衰减。超声波萃取时,样品整体作为一种介质是各向异性的,即在各个方向上都不均匀,不仅在两种介质的界面发生反射和折射,而且在较粗糙的界面上还发生散射,因此,到达样品内部的超声波能量会有一定程度的衰减,影响提取效果。对于超声波萃取来说,提取前样品的浸泡时间、超声波强度、超声波频率及提取时间等也是影响目标成分提取率的重要因素。超声波与媒质的作用及其产生的效应超声波在媒质中形成介质粒子的机械振动,这种由含有能量的超声波振动引起的与媒质的相互作用,可以归纳为热作用、机械作用和空化作用。
物理性质粘度:低粘度有利于两相的混合与分层,流动与传质,对萃取有利。对大粘度萃取剂,可加入其它溶剂进行调节。超临界的萃取特点:超临界流体的密度与溶解能力接近于液体,而又保持了气体的传递特性,故传质速率高,可更快达到萃取平衡;操作条件接近临界点,压力、温度的微小变化都可改变超临界流体的密度与溶解能力,故溶质与溶剂的分离容易,费用低;超临界萃取具有萃取和精馏的双重特性,可分离难分离物质;超临界流体一般具有化学性质稳定、无毒无腐蚀性、萃取操作温度不高等特点,故特别适用于医药、食品等工业;但超临界萃取一般在高压下进行,设备投资较大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。
萃取剂用量大,萃取液平均浓度低。多级逆流萃取。料液与萃取剂分别从级联(或板式塔)的两端加入,在级间作逆向流动,成为萃余液和萃取液,各自从另一端离去。料液和萃取剂各自经过多次萃取,因而萃取率较高,萃取液中被萃组分的浓度也较高,这是工业萃取常用的流程。连续逆流萃取。在微分接触式萃取塔(见萃取设备)中,料液与萃取剂在逆向流动的过程中进行接触传质,也是常用的工业萃取方法。料液与萃取剂之中,密度大的称为重相,密度小的称为轻相。萃取过程为液液传质,比汽液传质要难。昆明有机物萃取设备
然后静置沉降,分离成为两层液体,即由萃取剂转变成的萃取液和由料液转变成的萃余液。萃取的设备研发费用
固相萃取小柱具有疏水作用,对非极性的组分有吸附作用,因此可以从水中将多核芳烃萃取出来,完成浓缩样品的作用。固相萃取小柱还有其他类型,如极性、离子交换等。液固萃取:利用填充了细颗粒吸附剂的小柱作液-固萃取的方法很快就把液-液萃取方法比了下去,在样品基质的简化和痕量样品的富集等方面建立起自己的地位。液-液萃取有这样的一些问题:劳动力密集;经常受到乳化等实际问题的困扰;倾向于消耗大量的高纯度溶剂,这些溶剂往往对操作者健康和环境造成危害;在排放的时候带来额外的费用。萃取的设备研发费用