当前,石墨烯材料研究领域真正的挑战是如何低成本、大批量地生产高质量的石墨烯薄层,从而进行大规模应用.石墨烯材料的制备思路可分为自上而下从石墨或碳纳米管剥离得到石墨烯与自下而上地用分子合成石墨稀两种(图1)[23].前者以石墨稀和碳纳米管为原料通过机械剥离法、液相剥离法、氧化还原法等方法将石墨片层从石墨中剥离出来,后者通过含碳化合物以化学气相沉积和有机合成等途径来合成石墨烯。机械剥离法直接从石墨出发,通过一定的机械力将石墨片层剥离,可以制备得到缺陷较少的石墨烯材料.Geim小组就是通过“撕胶带”的机械剥离法***制备出了单层石墨烯.氧化石墨烯分散液为棕黑色溶液。合成石墨烯复合材料性能
CNTs和石墨烯具有独特的结构,用作NR复合材料的增强填料可以赋予橡胶制品**度、高耐磨、导电和导热等性能,拓宽橡胶材料的应用范围。碳纳米材料/NR复合材料的开发及应用发展潜力大,是功能性橡胶材料的一个重要发展方向。目前,我国CNTs和石墨烯工业产品的成本较高,其与NR复合材料的研究大多还处于试验研究阶段。随着CNTs和石墨烯在聚合物基体中的分散技术和作用机理研究的进一步深入以及市场规模化,CNTs和石墨烯在NR领域的大规模应用将得到快速发展,**推动我国NR复合材料的发展,提升我国橡胶工业的竞争力。江苏附近石墨烯复合材料使用方法氧化石墨烯分散液(SE3122、SE3522)。
氧化石墨烯可以用于提高环氧树脂、聚乙烯、聚酰胺等聚合物的导热性能。通常而言,碳基填料可以提高聚合物的热导率,但无法像提高导电性那么明显,甚至低于有效介质理论。其原因可能是因为热能传递主要是以晶格振动的形式,填料与聚合物之间以及填料与填料之间较弱的振动模式也会增加热阻。液态硅橡胶(LSR)广泛应用于电子器件的密封。然而,在一般情况下,LSR的导热性较差使得涂层或盆栽器件散热过量,从而导致器件损坏或寿命降低。为了缓解这一现状,Mu等人研究了宽体积范围内填充ZnO的硅橡胶的热导率,并研究了形成的导电粒子链对热导率的影响。同时也研究了Al2O3用量对硅橡胶导热性能和力学性能的影响。
聚合物太阳能电池常采用氧化铟锡(ITO)作为透明导电电极。其中ITO成本较高,机械稳定性较差,即使在很小的外界机械应力作用下ITO膜也易产生微裂纹导致膜电阻增加,从而使光电器件的性能下降。石墨烯优异的光学性能和机械强度及韧性,使其在柔性光伏器件的透明电极中具有更好应用潜力[97]。Xu等[98]将氧化石墨烯溶液旋涂成膜,然后在700 ℃下用肼蒸汽还原,所得石墨烯薄膜的薄层电阻为1.79×104 Ω/sq,电导率为22.3 S/cm,将其在有机光伏电池中(OPVs)作为透明电极,所得器件的功率转换效率为0.13%。这种方法制备得到的石墨烯薄膜不仅可以用于有机光伏电池,还可以用于其他光学器件,例如平板显示器等。Zhang等[99]对氧化石墨烯进行950 ℃热还原,再使用标准工业光刻以及O2等离子体蚀刻工艺对还原的石墨烯薄膜进行精确可控地刻蚀,制备了石墨烯网状透明电极(GME),提高了电极的透光率。石墨烯抗静电阻燃复合材料高氧指数,以及良好的流动性与力学性能。
氧化石墨烯(GO)是化学氧化法制备石墨烯的一种中间产物,具有SP2(C=O、C=C等)和SP3(C-C、C-O-C、C-OH等)杂化结构,表面带有大量的羟基、羧基和环氧基等含氧官能团,这些含氧官能团丰富了其表面活性,赋予了GO更多有趣的理化和生物学特性。GO 具有以下特性:(1)良好的亲水性,由于GO表面带有大量的羟基、羧基和环氧基等含氧官能团,使片层间存在静电斥力,因此可以很好的分散在水中;(2)具有较大的比表面积(2630m2/g),赋予GO超高的载药能力;(3)独特的两亲性,由于同时含有疏水性的平面与亲水性的边缘,使其具有特殊的表面性质,疏水***物和染料可通过π-π 堆积或疏水作用等对GO进行非共价修饰而负载,而含氧官能团等亲水性边缘可为功能化修饰提供活性位点;(4)固有的光学性质及光热转换能力,使GO 不仅能实现***细胞的生物成像,还能在***水平上实现光热***;(5)优异的机械性能,可以改善生物支架材料的空隙结构和机械性能,包括抗压强度和抗曲强度,而且可以加强支架的生物活性。基于这些特性,GO已被广泛应用于生物医学和复合材料等研究领域,尤其在药物载体、生物成像、**的光热***及组织再造工程等方面表现出了巨大的应用潜力。超级铜具有优异的高频性能,强磁场下交流(频率约1MHz)等效电阻,相比纯铜低20%以上。江苏制备石墨烯复合材料厂家报价
石墨烯导热性能优异,可制备导热复合材料、散热涂料等。合成石墨烯复合材料性能
随着人类对能源与日俱增的需求,寻找清洁能源是当代科学的研究发展方向。石墨烯作为一种二维碳材料,凭借其独特的物理化学性质,在新能源研究及实际生产中得到了广泛的关注,为能源领域的不断发展提供了无限潜力。氧化石墨烯是石墨烯的一种衍生物,其中大量的含氧官能团使其成为石墨烯功能化应用的重要物质,氧化石墨烯及其复合物在锂离子电池、超级电容器、燃料电池、太阳能电池等领域有了越来越多的发展和应用,促进了新能源领域的快速进步,对提高能源的利用效率、节能减排及环境保护意义重大。合成石墨烯复合材料性能