而我们面临的问题规模,前几年只是区域维度的调度粒度,一个商圈一分钟峰值100多单,匹配几百个骑手,但是这种乘积关系对应的数据已经非常大了。现在,由于美团有更多业务场景,比如跑腿和全城送,会跨非常多的商圈,甚至跨越半个城市,所以只能做城市级的全局优化匹配。目前,调度系统处理的问题的峰值规模,是1万多单和几万名骑手的匹配。而算法允许的运行时间只有几秒钟,同时对内存的消耗也非常大。另外,配送和网约车派单场景不太一样。打车的调度是做司机和乘客的匹配,本质是个二分图匹配问题,有多项式时间的比较好算法:KM算法。打车场景的难点在于,如何刻画每对匹配的权重。而配送场景还需要解决,对于没有多项式时间比较好算法的情况下,如何在指数级的解空间,短时间得到优化解。如果认为每一单和每个骑手的匹配有不同的适应度,那么这个适应度并不是可线性叠加的。也就意味着多单对多人的匹配方案中,任意一种匹配都只能重新运算适应度,其计算量可想而知。SaaS平台供应商将应用软件统一部署在自己的服务器上。上海水果配送SaaS服务
配送团队**终选用的是按组排班的方式,把所有骑手分成几组,规定每个组的开工时段。然后大家可以按组轮岗,每个人的每个班次都会轮到。这个问题比较大的挑战是,我们并不是在做一项业务工具,而是在设计算法。而算法要有自己的优化目标,那么排班的目标是什么呢?如果你要问站长,怎么样的排班是好的,可能他只会说,要让需要用人的时候有人。但这不是算法语言,更不能变成模型语言。决策变量及目标设计为了解决这个问题,首先要做设计决策变量,决策变量并没有选用班次的起止时刻和结束时刻,那样做的话,决策空间太大。我们把时间做了离散化,以半小时为粒度。对于***来讲,只有48个时间单元,决策空间大幅缩减。然后,目标定为运力需求满足订单量的时间单元**多。这是因为,并不能保证站点的人数在对应的进单曲线情况下可以满足每个单元的运力需求。所以,我们把业务约束转化为目标函数的一部分。这样做还有一个好处,那就是没必要知道站点的总人数是多少。同城配送SaaS租赁送道配送saas系统,适合区域管理、城市经理创业,有商家资源、有骑手兄弟,送道提供一套管理系统就创业了。
SaaS软件应用服务经过多年的发展,已经开始从SaaS1.0的阶段慢慢进化到SaaS2.0的阶段。类似于Web1.0与Web2.0的概念,SaaS1.0更多地强调由服务提供商本身提供全部应用内容与功能,应用内容与功能的来源是单一的;而SaaS2.0阶段,服务运营商在提供自身**SaaS应用的的同时,还向各类开发伙伴、行业合作伙伴开放一套具备强大定制能力的快速应用定制平台,使这些合作伙伴能够利用平台迅速配置出特定领域、特定行业的SaaS应用,与服务运营商本身的SaaS应用无缝集成,并通过服务运营商的门户平台、销售渠道提供给**终企业用户使用,共同分享收益。
算法应用效果做了这样的建模转换之后,流水线调度问题就有了大量的启发式算法可以借鉴。我们把一个经典的基于问题特征的启发式算法做了适配和改进,就可以得到非常好的效果。相比于之前的算法,耗时下降70%,整体优化效果不错。因为这是一个确定性算法,所以运行多少次的结果都一样。我们的算法运行一次,跟其它算法运行10次的比较好结果相比,优化效果是持平的。订单智能调度配送调度场景,可以用数学语言描述。它不仅是一个业务问题,更是一个标准的组合优化问题,并且是一个“马尔可夫决策”过程。什么是saas?软件即服务的意思。
既然存在这么多的问题,那么做区域规划项目就变得非常有必要。那么,什么是好的区域规划方案?基于统计分析的优化目标设定。多目标优化问题优化的三要素是:目标、约束、决策变量。***点,首先要确定优化目标。在很多比较稳定或者传统的业务场景中,目标非常确定。而在区域规划这个场景中,怎么定义优化目标呢?首先,我们要思考的是区域规划主要影响的是什么。从刚才几类问题的分析可以发现,影响的主要是骑手的顺路性、空驶率,也就是骑手平均为每一单付出的路程成本。所以,我们将问题的业务目标定为优化骑手的单均行驶距离。基于现有的大量区域和站点积累的数据,做大量的统计分析后,可以定义出这样几个指标:商家聚合度、订单的聚合度、订单重心和商家重心的偏离程度。数据分析结果说明,这几个指标和单均行驶距离的相关性很强。经过这一层的建模转化,问题明确为优化这三个指标。第二点,需要梳理业务约束。在这方面,我们花费了大量的时间和精力。比如:区域单量有上限和下限。区域之间不能有重合,不能有商家归多个区域负责。所有的AOI不能有遗漏,都要被某个区域覆盖到,不能出现商家没有站点的服务。外卖配送saas系统的代理,提供给看好这个赛道的城市或者区域代理商。天津自配送SaaS软件
配送saas系统是从哪一年开始的?2017年前后。上海水果配送SaaS服务
下面是一个实际案例,我们用算法把一个城市做了重新的区域规划。当然,这里必须要强调的是,在这个过程中,人工介入还是非常必要的。对于一些算法很难处理好的边角场景,需要人工进行微调,使整个规划方案更加合理。中间的图是算法规划的结果。经过试点后,测试城市整体的单均行驶距离下降了5%,平均每一单骑手的行驶距离节省超过100米。可以想象一下,在这么庞大的单量规模下,每单平均减少100米,总节省的路程、节省的电瓶车电量,都是一个非常可观的数字。更重要的是,可以让骑手自己明显感觉到自己的效率得到了提升。上海水果配送SaaS服务
上海冕勤信息技术有限公司拥有道路货物运输(不含危险货物),计算机信息技术领域内技术开发、技术转让、技术咨询、技术服务,电脑图文设计制作,广告设计、制作,利用自有媒体发布广告,商务信息咨询,企业管理咨询,餐饮企业管理,计算机、软件及辅助设备,办公文化用品,电子产品销售,国内货物运输代理,外卖递送服务。等多项业务,主营业务涵盖外卖配送服务,自配送服务,外卖配送saas系统,外卖配送管理系统。公司目前拥有较多的高技术人才,以不断增强企业重点竞争力,加快企业技术创新,实现稳健生产经营。上海冕勤信息技术有限公司主营业务涵盖外卖配送服务,自配送服务,外卖配送saas系统,外卖配送管理系统,坚持“质量保证、良好服务、顾客满意”的质量方针,赢得广大客户的支持和信赖。公司力求给客户提供全数良好服务,我们相信诚实正直、开拓进取地为公司发展做正确的事情,将为公司和个人带来共同的利益和进步。经过几年的发展,已成为外卖配送服务,自配送服务,外卖配送saas系统,外卖配送管理系统行业出名企业。