语音关键事件检测基本参数
  • 品牌
  • Bothlent
  • 型号
  • XFM-USBMEMS-6MIC
  • 封装形式
  • DIP
语音关键事件检测企业商机

    实施例一:待分析图像为上述类图像,即待分析图像为至少包含当前帧图像的目标防护舱的图像:则上述步骤s304,包括如下步骤f1-f2:步骤f1:将待分析图像输入到预设的场景图像检测模型中,得到场景图像检测模型输出的检测结果;步骤f2:基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果;其中,由于待分析图像为目标防护舱的场景图像,则在本实施例一中,所采用的检测模型即为预设的场景图像检测模型,且用于训练该场景图像检测模型的各个样本图像组中所包括的图像可以称为场景图像。需要说明的是,场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中的图像与待分析图像的图像数量相同,各个样本图像组中的图像为:所采集到的关于防护舱的图像。具体的,当待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,则场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像。其中,针对至少一个防护舱,在该防护舱中发生各类事件时,采集m+1帧关于该防护舱的图像,这样。语音关键事件检测用到了哪些技术?欢迎咨询!安徽量子语音关键事件检测介绍

    比如人名、地名、组织机构名、时间等。4、事件检测与主体抽取:事件检测与主体抽取即为同时抽取事件的触发词和事件的主体。5、注意力机制:注意力机制的本质来自于人类视觉注意力机制。当人们发现一个场景经常在某部分出现自己想观察的东西时,人们会进行学习在将来再出现类似场景时把注意力放到该部分上。在计算某一序列表示时,注意力机制可以获得权重和序列位置的相关性。6、自注意力机制:自注意力机制是对注意力机制的改进,减少了对外部信息的依赖,更擅长捕捉数据或特征的内部相关性,无视词之间的距离直接计算依赖关系,能够学习一个句子的内部结构。7、span:span可认为是“一段区域,每个span具有一定的宽度”,就是对一段话进行固定长度的选取,比如一句话“我吃了面包,喝了牛奶”,如果span的宽度为2,则可以得到片段“我今”、“”、“天吃”等。8、span的划分:span的划分是指根据设定的span的大宽度,从小到大依次进行划分。比如span大宽度为8,则span的宽度为1-8,分别进行划分,可以得到多个span。9、span的分类:span的分类是指通过模型或特定的方法判断一条数据所属的类型即标签,一般而言,分类任务中的每条数据只属于一个类别。自主可控语音关键事件检测服务标准语音关键事件检测的成熟度如何?

    如果是,基于所述当前帧图像,确定待分析图像,其中,所述待分析图像为:关于所述目标语音关键事件检测防护舱及所述目标对象的图像;将所述待分析图像输入到预设的检测模型中,得到关于所述目标防护舱的事件检测结果;其中,所述检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。第二方面,本发明实施例提供了一种事件检测装置,所述装置包括:图像获取模块,用于实时获取关于目标防护舱的图像,并将当前时刻所采集到的图像作为当前帧图像;图像检测模块,用于检测所述当前帧图像是否包含目标对象,其中,所述目标对象为:能够表征用户进入所述目标防护舱的用户身体部位;如果是,触发图像确定模块;所述图像确定模块,用于基于所述当前帧图像,确定待分析图像,其中,所述待分析图像为:关于所述目标防护舱及所述目标对象的图像;结果确定模块,用于将所述待分析图像输入到预设的检测模型中,得到关于所述目标防护舱的事件检测结果;其中,所述检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。第三方面,本发明实施例提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口。

    还可以在检测到发生异常事件时,确定所发生的异常事件的事件类型。即事件检测结果为:关于发生异常事件且所发生异常事件类型的结果。这样,电子设备可以根据检测模型的输出结果,确定目标防护舱内发生哪种异常事件。可选的,一种具体实现方式中:在上述步骤s304中,上述检测模型可以直接输出:所发生的异常事件的类型,这样,电子设备便可以直接确定目标防护舱内用户出现的异常事件的类型,并将该类型作为:关于目标防护舱的事件检测结果。例如,倒地事件;这样,电子设备便可以确定目标防护舱内出现用户意外倒地的事件。可选的,另一种具体实现方式中:在上述步骤s304中,在训练检测模型时,可以预先设定多种类型的异常事件,则上述检测模型可以直接输出:正常事件概率以及每种类型的异常事件的概率。其中,正常事件表示目标防护舱内未发生异常事件。这样,电子设备便可以将概率比较高的事件确定为目标防护舱内用户出现的事件的类型,并将该类型作为:关于目标防护舱的事件检测结果。显然,当正常事件概率比较高时,则可以确定目标防护舱内未发生异常事件,当某类型的异常事件的概率比较高时,则可以确定目标防护舱内发生该类型异常事件。例如,正常事件概率5%。语音关键事件检测一般设置在哪些地方?欢迎咨询!

    这样,电子设备在每获取到一帧图像时,便可以利用该帧图像和该帧图像的前一帧图像,得到该帧图像对应的光流图。进一步的,在本实现方式中,上述步骤s303,基于当前帧图像,确定待分析图像,便可以包括如下步骤e1:步骤e1:将至少包含光流图在内的第二类图像确定为待分析图像,其中,第二类图像中各个图像均为:基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图。由于电子设备实时获取的关于目标防护舱的图像均为目标图像采集设备所采集的、能够反映目标防护舱的内部空间在每个时刻的真实情况的图像,而光流图是基于这些关于目标防护舱的图像中人物的运动变化情况获得的,因此,电子设备可以将光流图确定为待分析图像。从而,利用待分析图像,确定当前时刻,关于目标防护舱的事件检测结果。其中,为了描述简单,可以将当前帧图像的光流图简称为光流图。其中,由于本发明实施例是对目标防护舱内的用户是否处于正常情况中进行检测,因此,第二类图像中的各个光流图应该是关于目标防护舱中用户运动情况的光流图。进一步的,由于每帧光流图是通过连续两帧图像获取到的,因此,在本实现方式中。语音关键事件检测和摄像头有联系吗?自主可控语音关键事件检测服务标准

语音关键事件检测的设备有哪些?安徽量子语音关键事件检测介绍

    上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于ram、rom、eeprom、闪存或其他存储器技术、cd-rom、数字多功能盘(dvd)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是。安徽量子语音关键事件检测介绍

与语音关键事件检测相关的文章
与语音关键事件检测相关的产品
与语音关键事件检测相关的新闻
与语音关键事件检测相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责