人们在使用梅尔倒谱系数及感知线性预测系数时,通常加上它们的一阶、二阶差分,以引入信号特征的动态特征。声学模型是语音识别系统中为重要的部分之一。声学建模涉及建模单元选取、模型状态聚类、模型参数估计等很多方面。在目前的LVCSR系统中,普遍采用上下文相关的模型作为基本建模单元,以刻画连续语音的协同发音现象。在考虑了语境的影响后,声学模型的数量急剧增加,LVCSR系统通常采用状态聚类的方法压缩声学参数的数量,以简化模型的训练。在训练过程中,系统对若干次训练语音进行预处理,并通过特征提取得到特征矢量序列,然后由特征建模模块建立训练语音的参考模式库。搜索是在指定的空间当中,按照一定的优化准则,寻找优词序列的过程。搜索的本质是问题求解,应用于语音识别、机器翻译等人工智能和模式识别的各个领域。它通过利用已掌握的知识(声学知识、语音学知识、词典知识、语言模型知识等),在状态(从高层至底层依次为词、声学模型、HMM状态)空间中找到优的状态序列。终的词序列是对输入的语音信号在一定准则下的一个优描述。在识别阶段,将输入语音的特征矢量参数同训练得到的参考模板库中的模式进行相似性度量比较。语音识别还无法做到无限制领域、无限制人群的应用,但是至少从应用实践中我们看到了一些希望。湖北语音识别源码
声音的感知qi官正常人耳能感知的频率范围为20Hz~20kHz,强度范围为0dB~120dB。人耳对不同频率的感知程度是不同的。音调是人耳对不同频率声音的一种主观感觉,单位为mel。mel频率与在1kHz以下的频率近似成线性正比关系,与1kHz以上的频率成对数正比关系。02语音识别过程人耳接收到声音后,经过神经传导到大脑分析,判断声音类型,并进一步分辨可能的发音内容。人的大脑从婴儿出生开始,就不断在学习外界的声音,经过长时间的潜移默化,终才听懂人类的语言。机器跟人一样,也需要学习语言的共性和发音的规律,才能进行语音识别。音素(phone)是构成语音的*小单位。英语中有48个音素(20个元音和28个辅音)。采用元音和辅音来分类,汉语普通话有32个音素,包括元音10个,辅音22个。但普通话的韵母很多是复韵母,不是简单的元音,因此拼音一般分为声母(initial)和韵母(final)。汉语中原来有21个声母和36个韵母,经过扩充(增加aoeywv)和调整后,包含27个声母和38个韵母(不带声调)。普通话的声母和韵母(不带声调)分类表音节(syllable)是听觉能感受到的自然的语音单位,由一个或多个音素按一定的规律组合而成。英语音节可单独由一个元音构成。也可由一个元音和一个或多个辅音构成。重庆语音识别公司对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升。
将匹配度高的识别结果提供给用户。ASR技术已经被应用到各种智能终端,为人们提供了一种崭新的人机交互体验,但多数都是基于在线引擎实现。本文针对离线网络环境,结合特定领域内的应用场景,提出了一套实用性强,成本较低的语音识别解决方案,实现非特定人连续语音识别功能。第二章本文从方案的主要功能模块入手,对涉及到的关键要素进行详细的分析描述,同时对实现过程中的关键事项进行具体分析,并提出应对措施。第三章根据方案设计语音拨号软件,并对语音拨号软件的功能进行科学的测试验证。1低成本的语音识别解决方案(1)主要功能划分在特定领域内的语音识别,主要以命令发布为主,以快捷实现人机交互为目的。比如在电话通信领域,我们常以“呼叫某某某”、“帮我查找某某某电话”为语音输入,这些输入语音语法结构单一,目的明确,场景性较强,本方案决定采用命令模式实现语音识别功能。方案主要包括四个功能模块:语音控制模块、音频采集模块、语音识别离线引擎和应用数据库模块,各模块的主要功能及要求如图1所示。图1低成本语音识别解决方案功能模块语音控制模块作为方案实现的模块,主要用于实现语音识别的控制管理功能。
应用背景随着信息时代的到来,语音技术、无纸化技术发展迅速,但是基于会议办公的应用场景,大部分企业以上技术应用都不够广,会议办公仍存在会议记录强度高、出稿准确率低,会议工作人员压力大等问题。为解决上述问题,智能语音识别编译管理系统应运而生。智能语音识别编译管理系统的主要功能是会议交流场景下语音实时转文字,解决了人工记录会议记要易造成信息偏差、整理工作量大、重要会议信息得不到体系化管控、会议发言内容共享不全等问题,提升语音技术在会议中的应用水平,切实提升会议的工作效率。实现功能智能语音识别编译管理系统对会议信息进行管理,实现实时(历史)会议语音转写和在线编辑;实现角色分离、自动分段、关键词优化、禁忌词屏蔽、语气词过滤;实现全文检索、重点功能标记、按句回听;实现展板设置、导出成稿、实时上屏等功能。技术特点语音转文字准确率高。系统中文转写准确率平均可达95%,实时语音转写效率能够达到≤200毫秒,能够实现所听即所见的视觉体验。系统能够结合前后文智能进行语句顺滑、智能语义分段,语音转写过程中也能够直接对转写的文本进行编辑,编辑完成后即可出稿。会议内容记录更完整。系统可实现对全部发言内容的记录。在安静环境、标准口音、常见词汇场景下的语音识别率已经超过 95%。
语音识别技术飞速发展,又取得了几个突破性的进展。1970年,来自前苏联的Velichko和Zagoruyko将模式识别的概念引入语音识别中。同年,Itakura提出了线性预测编码(LinearPredictiveCoding,LPC)技术,并将该技术应用于语音识别。1978年,日本人Sakoe和Chiba在前苏联科学家Vintsyuk的工作基础上,成功地使用动态规划算法将两段不同长度的语音在时间轴上进行了对齐,这就是我们现在经常提到的动态时间规整(DynamicTimeWarping,DTW)。该算法把时间规整和距离的计算有机地结合起来,解决了不同时长语音的匹配问题。在一些要求资源占用率低、识别人比较特定的环境下,DTW是一种很经典很常用的模板匹配算法。这些技术的提出完善了语音识别的理论研究,并且使得孤立词语音识别系统达到了一定的实用性。此后,以IBM公司和Bell实验室为的语音研究团队开始将研究重点放到大词汇量连续语音识别系统(LargeVocabularyContinuousSpeechRecognition,LVCSR),因为这在当时看来是更有挑战性和更有价值的研究方向。20世纪70年代末,Linda的团队提出了矢量量化(VectorQuantization。VQ)的码本生成方法,该项工作对于语音编码技术具有重大意义。远场语音识别技术以前端信号处理和后端语音识别为主,以让语音更清晰,后送入后端的语音识别引擎进行识别。福建语音识别平台
语音识别主要是将人类语音中的词汇内容转换为计算机可读的输入。湖北语音识别源码
在过去功能型操作系统的打造过程中,国内的程序员们更多的是使用者的角色,但智能型操作系统虽然也可以参照其他,但这次必须自己来从头打造完整的系统。(国外巨头不管在中文相关的技术上还是内容整合上事实上都非常薄弱,不存在国内市场的可能性)随着平台服务商两边的问题解决的越来越好,基础的计算模式则会逐渐发生改变,人们的数据消费模式会与不同。个人的计算设备(当前主要是手机、笔记本、Pad)会根据不同场景进一步分化。比如在车上、家里、酒店、工作场景、路上、业务办理等会根据地点和业务进行分化。但分化的同时背后的服务则是统一的,每个人可以自由的根据场景做设备的迁移,背后的服务虽然会针对不同的场景进行优化,但在个人偏好这样的点上则是统一的。人与数字世界的接口,在现在越来越统一于具体的产品形态(比如手机),但随着智能型系统的出现,这种统一则会越来越统一于系统本身。作为结果这会带来数据化程度的持续加深,我们越来越接近一个数据化的世界。总结从技术进展和产业发展来看,语音识别虽然还不能解决无限制场景、无限制人群的通用识别问题,但是已经能够在各个真实场景中普遍应用并且得到规模验证。更进一步的是。
湖北语音识别源码