语音识别基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 工作电源电压
  • 5
语音识别企业商机

    我们来看一个简单的例子,假设词典包含:jin1tian1语音识别过程则"jin天"的词HMM由"j"、"in1"、"t"和"ian1"四个音素HMM串接而成,形成一个完整的模型以进行解码识别。这个解码过程可以找出每个音素的边界信息,即每个音素(包括状态)对应哪些观察值(特征向量),均可以匹配出来。音素状态与观察值之间的匹配关系用概率值衡量,可以用高斯分布或DNN来描述。从句子到状态序列的分解过程语音识别任务有简单的孤立词识别,也有复杂的连续语音识别,工业应用普遍要求大词汇量连续语音识别(LVCSR)。主流的语音识别系统框架。对输入的语音提取声学特征后,得到一序列的观察值向量,再将它们送到解码器识别,后得到识别结果。解码器一般是基于声学模型、语言模型和发音词典等知识源来识别的,这些知识源可以在识别过程中动态加载,也可以预先编译成统一的静态网络,在识别前一次性加载。发音词典要事先设计好,而声学模型需要由大批量的语音数据(涉及各地口音、不同年龄、性别、语速等方面)训练而成,语言模型则由各种文本语料训练而成。为保证识别效果,每个部分都需要精细的调优,因此对系统研发人员的专业背景有较高的要求。需要对发生在数千个离散时间步骤前的事件进行记忆,这对语音识别很重要。黑龙江远场语音识别

    而且有的产品在可用性方面达到了很好的性能,例如微软公司的Whisper、贝尔实验室的***TO、麻省理工学院的SUMMIT系统、IBM的ViaVioce系统。英国剑桥大学SteveYoung开创的语音识别工具包HTK(HiddenMarkovToolKit),是一套开源的基于HMM的语音识别软件工具包,它采用模块化设计,而且配套了非常详细的HTKBook文档,这既方便了初学者的学习、实验(HTKBook文档做得很好),也为语音识别的研究人员提供了专业且便于搭建的开发平台。HTK自1995年发布以来,被采用。即便如今,大部分人在接受语音专业启蒙教育时,依然还是要通过HTK辅助将理论知识串联到工程实践中。可以说,HTK对语音识别行业的发展意义重大。进入21世纪头几年,基于GMM-HMM的框架日臻成熟完善,人们对语音识别的要求已经不再满足于简单的朗读和对话,开始将目光着眼于生活中的普通场景,因此研究的重点转向了具有一定识别难度的日常流利对话、电话通话、会议对话、新闻广播等一些贴近人类实际应用需求的场景。但是在这些任务上,基于GMM-HMM框架的语音识别系统的表现并不能令人满意。识别率达到80%左右后,就无法再取得突破。人们发现一直占据主流的GMM-HMM框架也不是wan能的。黑龙江远场语音识别语音识别在移动端和音箱的应用上为火热,语音聊天机器人、语音助手等软件层出不穷。

    即在解码端通过搜索技术寻找优词串的方法。连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,佳匹配的参考模式被作为识别结果。当今语音识别技术的主流算法,主要有基于动态时间规整(DTW)算法、基于非参数模型的矢量量化(VQ)方法、基于参数模型的隐马尔可夫模型(HMM)的方法、以及近年来基于深度学习和支持向量机等语音识别方法。站在巨人的肩膀上:开源框架目前开源世界里提供了多种不同的语音识别工具包,为开发者构建应用提供了很大帮助。但这些工具各有优劣,需要根据具体情况选择使用。下表为目前相对流行的工具包间的对比,大多基于传统的HMM和N-Gram语言模型的开源工具包。对于普通用户而言,大多数人都会知道Siri或Cortana这样的产品。而对于研发工程师来说,更灵活、更具专注性的解决方案更符合需求,很多公司都会研发自己的语音识别工具。(1)CMUSphinix是卡内基梅隆大学的研究成果。

    先行者叮咚音箱的出师不利,更是加重了其它人的观望心态。真正让众多玩家从观望转为积极参与的转折点是逐步曝光的Echo销量,近千万的美国销量让整个世界震惊。这是智能设备从未达到过的高点,在Echo以前除了AppleWatch与手环,像恒温器、摄像头这样的产品突破百万销量已是惊人表现。这种销量以及智能音箱的AI属性促使下半年,国内各大巨头几乎是同时转度,积极打造自己的智能音箱。未来,回看整个发展历程,是一个明确的分界点。在此之前,全行业是突飞猛进,之后则开始进入对细节领域渗透和打磨的阶段,人们关注的焦点也不再是单纯的技术指标,而是回归到体验,回归到一种“新的交互方式到底能给我们带来什么价值”这样更为一般的、纯粹的商业视角。技术到产品再到是否需要与具体的形象进行交互结合,比如人物形象;流程自动化是否要与语音结合;酒店场景应该如何使用这种技术来提升体验,诸如此类终都会一一呈现在从业者面前。而此时行业的主角也会从原来的产品方过渡到平台提供方,AIoT纵深过大,没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时。

    该系统分析该人的特定声音,并使用它来微调对该人语音的识别,从而提高准确性。

    LSTM)的循环神经网络RNN,能够通过遗忘门和输出门忘记部分信息来解决梯度消失的问题。由LSTM也衍生出了许多变体,较为常用的是门控循环单元(GatedRecurrentUnit,GRU),在训练数据很大的情况下GRU相比LSTM参数更少,因此更容易收敛,从而能节省很多时间。LSTM及其变体使得识别效果再次得到提升,尤其是在近场的语音识别任务上达到了可以满足人们日常生活的标准。另外,时延神经网络(TimeDelayNeuralNetwork,TDNN)也获得了不错的识别效果,它可以适应语音的动态时域变化,能够学习到特征之间的时序依赖。深度学习技术在近十几年中,一直保持着飞速发展的状态,它也推动语音识别技术不断取得突破。尤其是近几年,基于端到端的语音识别方案逐渐成了行业中的关注重点,CTC(ConnectionistTemporalClassification)算法就是其中一个较为经典的算法。在LSTM-CTC的框架中,后一层往往会连接一个CTC模型,用它来替换HMM。CTC的作用是将Softmax层的输出向量直接输出成序列标签,这样就实现了输入语音和输出结果的直接映射,也实现了对整个语音的序列建模。2012年,Graves等人又提出了循环神经网络变换器RNNTransducer,它是CTC的一个扩展,能够整合声学模型与语言模型,同时进行优化。语音识别是项融多学科知识的前沿技术,覆盖数学与统计学、声学与语言学、计算机与人工智能等基础前沿学科。广州移动语音识别介绍

语音识别是项融合多学科知识的前沿技术,覆盖了数学与统计学、声学与语言学、计算机与人工智能等基础学科。黑龙江远场语音识别

    使用语音识别功能之前,先按照说明书安装百度语音输入软件。在浏览器中输入VOICEM380底部的软件下载链接,就可以直接进入软件下载界面了,清晰简单,自行选择win版/Mac版,跟着界面提示一部一部操作就ok。中间绑定手机/邮箱账号,接收验证码,输入VOICEM380底部的***码。安装流程就结束了,让我们来试试神奇的语音识别~先试了一下普通话模式,据官方说,每分钟可听写约400字,准确率高达98%。特意找了一段听起来十分晦涩、拗口的话来测试,先清点VOICEM380的语音识别键。此时电脑右下角出现小弹框,进入语音接收阶段。以正常语速随便读了一下,转化效果非常好,实现零误差;而且对于智能语音识别中的“智能”也有了很好的诠释,如动图,有些人名、专有名词不能在一时间正确输出,但会随着语音的不断输入,不断修正、调整前面的内容;输入结束后,可以再次轻点VOICEM380的语音识别键,进入“识别”阶段,个人感觉,更像是对于刚刚输出的内容进行后的整合;如果刚刚的输出有出现标点错乱、错别字的现象,会在这个识别阶段,统一调整,终整合后输出的内容,正确率十分ok。接着试了一下中译英模式和英译中模式,整体操作和普通话模式一致。虽然涉及了不同语种之间的翻译转化。黑龙江远场语音识别

与语音识别相关的文章
与语音识别相关的产品
与语音识别相关的新闻
与语音识别相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责