检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。在该检测模型的训练过程中,可以将各个样本图像作为待训练模型的输入,将各个样本图像的事件检测结果作为待训练模型的输出。这样,在训练过程中,待训练模型可以学习各个样本图像中的图像特征,输出各个样本图像的事件检测结果,逐步建立样本图像的图像特征和事件检测结果的对应关系。这样,经过大量样本图像的学习,便可以得到上述检测模型。而该训练得到的检测模型也就可以用于对基于当前帧图像确定的待分析图像进行检测,输出的事件检测结果,即为关于目标防护舱的事件检测结果。显然,在训练上述检测模型时,所使用的样本图像为关于防护舱的图像。需要强调的是,不同类型和数量的待分析图像,所利用的检测模型也是不同的。为了行为清楚,后续将会对待分析图像与检测模型之间的对应关系进行举例说明。需要说明的是,上述检测模型可以在电子设备中训练得到的,也可以在与电子设备通信连接的其他电子设备中训练得到的,这样,电子设备便可以从该其他电子设备中获得上述检测模型,这都是合理的。此外,在本发明实施例中,电子设备可以检测目标防护舱内是否发生异常事件,则在这种情况下。语音关键事件检测算法的性能评估通常包括准确率、召回率和F1分数等指标。湖北量子语音关键事件检测是什么
便可以得到一个第二样本图像组及样本图像组的事件检测结果。实施例三:上述步骤f2,基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果,可以包括以下步骤f21-f23:步骤f21:将至少包含光流图在内的第二类图像确定为辅助图像,第二类图像中各个图像的类型均为:基于每两帧连续的关于所述目标防护舱且包括所述目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图;步骤f22:将辅助图像输入到预设的光流图检测模型中,得到光流图检测模型输出的检测结果;其中,光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中的图像与待分析图像的图像数据相同,各个第二样本图像组中的图像为:关于防护舱的光流图;步骤f23:将场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果进行融合计算,基于融合计算的结果,确定关于目标防护舱的事件检测结果。也就是说,在本实施例三中,可以同时利用场景图像检测模型对类图像进行检测,得到一个检测结果,利用光流图检测模型对第二类图像进行检测,得到另一个检测结果,进而,将两个检测结果进行融合计算,并基于融合计算的结果。河南移动语音关键事件检测服务标准语音关键事件检测在线咨询鱼亮科技!
在清单中,LayerUI的installUI()方法调用setLayerEventMask()检测鼠标移动事件,它又调用eventDispatched()方法返回结果。这个方法首先调用()方法确定鼠标移动事件相对于层的坐标位置。接下来这个方法通过检查它的坐标是否落在围绕UI中心的一个矩形区域内,检测鼠标指针是否移到印记文本上方,如果坐标刚好落在这个矩形区域内,印记文本的颜色就变为淡红色,除此以外,印记文本的颜色就恢复为蓝色。显示了鼠标移到印记文本上方前后的颜色变化。鼠标指针移到文本上方时,重新绘制文本颜色给用户一个不刺眼的提示小结JLayer对自定义绘制和事件检测的支持让你可以改进UI的各个组件,你可以将这个Swing组件和半透明及任意形状窗口特性结合起来使用,让你可以设计出更有趣的用户界面。
上述本发明实施例提供的一种事件检测方法还可以包括如下步骤a1-a2:步骤a1:判断目标防护舱当前时刻发生的事件类型是否包括预设类型的事件;如果是,执行步骤a2;步骤a2:生成并发出与预设类型对应的报警信号。当电子设备确定当前时刻目标防护舱内出现的异常事件的类型后,便可以进一步判断该事件类型是否包括预设类型的事件,并在判断结果为时是,生成并发出与预设类型对应的报警信息。例如,当电子设备确定当前时刻目标防护舱内出现的异常事件为用户倒地事件,而预设类型的事件也为用户倒地事件时,电子设备便可以判断得到:目标目标防护舱当前时刻发生的事件类型包括预设类型的事件。进而,电子设备便可以生成和发出与用户倒地事件对应的报警信号,例如,发出“请拨打120”的语音信息等。其中,电子设备生成并发出的报警信号可以有多种形式,例如,指示灯闪烁,发出语音信息,发出警报声等。这都是合理的。此外,为了能够更充分地了解异常事件发生前后,目标防护舱的内部情况,监控人员通常会在异常事件处理结束后,去查看目标防护舱的监控视频。然而,由于目标防护舱的监控视频具有大量的视频数据,且该数据数据还在实时增加,因此。语音关键事件检测在哪些地区被大力推广?欢迎咨询!
根据设定的span宽度,对语句进行span划分,以将语句划分为多个span,并对每个span进行标记;其中,每个标记表示x+y+1种类型中的任意一种,1表示所述触发词的类型和所述事件主体的类型以外的其他类型。在本申请的示例性实施例中,所述对所述向量化语义表示w1进行span划分,得到多个语义片段可以包括:获取设定的span的大宽度max_span_width;根据span的宽度从1到max_span_width依次在所述向量化语义表示w1上进行选取,获得多个span的语义表示span_embedding。在本申请的示例性实施例中,所述对所述新的语义表示w3进行span分类可以包括:使用两层全连接神经网络和softmax层对每个span进行分类;其中,在训练阶段,将分类结果与带有标记的span进行误差计算和反向传播。本申请还提供了一种事件检测装置,可以包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任意一项所述的事件检测方法。与相关技术相比,本申请可以包括:获得语句的向量化语义表示w1;对所述向量化语义表示w1进行span划分,得到多个语义片段;对多个语义片段进行平均池化,得到每个span的表示w2。语音关键事件检测的劣处是什么?欢迎咨询!湖南光纤数据语音关键事件检测设计
智能语音质检都有什么功能?欢迎来电咨询!湖北量子语音关键事件检测是什么
并为所得到的截图添加标签,其中,标签包括:采集当前帧图像的采集时间和所发生异常事件类型对应的类型标签。可选的,一种具体实现方式中,上述装置还包括:视频标记模块,用于当事件检测结果为关于发生异常事件且所发生异常事件类型的结果时,在关于目标防护舱的监控视频中,为当前帧图像添加第二标签,其中,第二标签包括:所发生异常事件类型对应的类型标签。相应于上述本发明实例提供的一种事件检测方法,本发明实施例还提供了一种电子设备,如图7所示,包括处理器701、通信接口702、存储器703和通信总线704,其中,处理器701,通信接口702,存储器703通过通信总线704完成相互间的通信,存储器703,用于存放计算机程序;处理器701,用于执行存储器703上所存放的程序时,实现上述本发明实施例提供的一种事件检测方法中的任一方法步骤。上述电子设备提到的通信总线可以是外设部件互连标准(peripheralcomponentinterconnect,pci)总线或扩展工业标准结构(extendedindustrystandardarchitecture,eisa)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中用一条粗线表示,但并不表示有一根总线或一种类型的总线。湖北量子语音关键事件检测是什么