语音服务基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 加工定制
  • 工作电源电压
  • 5
语音服务企业商机

    该帐户附带200美元的服务额度,可用于支付长达30天的付费语音服务订阅。当额度用尽或30天期限已过,将禁用Azure服务。若要继续使用Azure服务,必须升级帐户。有关详细信息,请参阅如何升级Azure帐户。语音服务有两个服务层:(f0)和订阅(s0),它们有不同的限制和优点。如果使用的低流量语音服务层级,即使是在试用帐户或服务额度过期之后,也仍可以保留此订阅。有关详细信息,请参阅认知服务定价-语音服务。创建Azure资源若要将语音服务资源(层或付费层)添加到Azure帐户,请执行以下步骤:使用你的Microsoft帐户登录到Azure门户。选择门户左上角的“创建资源”。如果未看到“创建资源”,可通过选择屏幕左上角的折叠菜单找到它。在“新建”窗口中的搜索框内键入“语音”,然后按ENTER。在搜索结果中,选择“语音”。选择“创建”,然后:为新资源指定的名称。名称有助于区分绑定到同一服务的多个订阅。选择新资源关联的Azure订阅,以确定计费方式。以下是在Azure门户中如何创建Azure订阅的介绍。选择将使用资源的区域。Azure是一个全球性云平台,在世界各地的许多区域都可以使用。若要获得比较好性能,请选择离你近或应用程序运行的区域。语音服务的可用性因地区而异。

    增强型语音通话服务(EVS)编解码器。陕西量子语音服务

语音生物识别--呼叫验证技术可以标记可疑的入站呼叫,以在开始前阻止。此外,语音生物特征可用于通过简化的基于语音的身份验证来验证说话人。意图预测--当前IVR认可度如此之低的原因之一是,他们无法在呼叫前其他渠道的客户行程。这种了解和理解客户在线行为的能力对于实现更好的语音自助服务至关重要。通过使用人口统计和行为信息,公司可以利用这种意图来提供比较好的体验。多模式通话--随着智能手机的普及,可以将可视辅助设备与语音通话相结合。客户可以在智能手机上无缝、安全地输入或查看信息,以提高通话的准确性和安全性。这提高了平均处理时间和法规遵从性。会话生成器技术--新的低代码工具技术使非技术资源能够以与数字相同的方式快速构建语音对话旅程。这为公司提供了更大的灵活性和敏捷性来推出会话服务。为了充分利用语音技术进行数字化转型,公司必须确保技术完全集成到数据驱动的客户体验平台中。这意味着有能力发现意图,建立机器人的行动意图,与客户关系管理系统集成,以获取上下文,监测性能和优化自然语言模型,并报告这些行动的效果实时。公司开始将购买力转向首席客户官,他负责监督所有与客户有关的技术。一些具有前瞻性思维的公司意识到。海南移动语音服务有什么高清语音服务(WB)则可支持宽带音频信号,音频带宽的频率达到7kHz。

    该程序被处理器执行时实现上述方法的步骤。本发明实施例的有益效果在于:语音服务端从物联网主控设备获取语音控制请求,通过语音控制请求中的目标设备用户信息来调用相应的设备列表,通过语音控制请求中的目标设备区域配置信息从该设备列表中确定对应区域的受控设备信息,进而对该受控设备信息所指示的物联网受控设备进行操控,因此能够对用户下不同区域的受控设备分别进行语音控制,拓展了语音控制方案的应用场景。另外,还不需要用户语音消息中包括区域信息,提高了用户的语音操控体验。说明为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用作一简单地介绍,显而易见地,下面描述是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,根据本发明实施例的应用于语音服务端的物联网设备语音控制方法的一示例的流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的用于确定设备列表的过程的一示例的流程。

    准备自定义语音服务识别的数据数据多样性:用来测试和训练自定义模型的文本和音频需要包含你的模型需要识别的来自各种说话人和场景的示例。收集进行自定义模型测试和训练所需的数据时,请考虑以下因素:你的文本和语音音频数据需要涵盖用户在与你的模型互动时所用的各种语言陈述。例如,一个能升高和降低温度的模型需要针对人们在请求进行这种更改时会用的陈述进行训练。你的数据需要包含模型需要识别的所有语音变型。许多因素可能会改变语音,包括口音、方言、语言混合、年龄、性别、语音音调、紧张程度和当日时间。你包括的示例必须来自使用模型时所在的各种环境(室内、户外、公路噪音)。必须使用生产系统将要使用的硬件设备来收集音频。如果你的模型需要识别在不同质量的录音设备上录制的语音,则你提供的用来训练模型的音频数据也必须能够这些不同的场景。以后可以向模型中添加更多数据,但要注意使数据集保持多样性并且能够你的项目需求。将不在你的自定义模型识别需求范围内的数据包括在内可能会损害整体识别质量,因此请不要包括你的模型不需要转录的数据。基于部分场景训练的模型只能在这些场景中很好地执行。

     语音服务通知当客户的系统发生变更、故障、安全、变化时,通知相应人员对问题进行响应处理。

    则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。美国英语(en-US)英语音频的人为标记的听录必须以纯文本形式提供,使用ASCII字符。避免使用拉丁语-1或Unicode标点字符。从文字处理应用程序中复制文本或从网页中擦除数据时,常常会无意中添加这些字符。如果存在这些字符,请务必将其更新为相应的ASCII替代字符。美国英语的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。将非标准数字字符串写成字词(例如会计术语)。应按照发音听录非字母字符或混合字母数字字符。不应编辑可以作为字词发音的缩写(例如,“radar”、“laser”、“RAM”或“NATO”)。将发音的缩写写成单独的字母,每个字母用单个空格分开。如果使用音频,请将数字听录为与音频匹配的字词(例如“101”可以读作“oneohone”或“onehundredandone”)。请避免将字符、单词或词组重复三次以上,例如“yeahyeahyeahyeah”。语音服务可能会删除具有此类重复的行。

     有关语音服务订阅的建议区域列表,请参阅设置Azure帐户。海南移动语音服务有什么

引入超宽带(EVS-SWB)语音服务,提高通信质量。陕西量子语音服务

    则该模型将标记为“失败”。并非所有基础模型都支持使用音频数据进行训练。如果基础模型不支持它,则服务将忽略音频。并使用听录内容的文本进行训练。在这种情况下,训练将与使用相关文本进行的训练相同。有关支持使用音频数据进行训练的基础模型的列表,请参阅语言支持。用于训练的纯文本数据在识别产品名称或行业特定的术语时,可以使用域相关句子来提高准确性。可将句子作为单个文本文件提供。若要提高准确性,请使用较接近预期口头言语的文本数据。使用纯文本进行的训练通常在几分钟内完成。若要使用句子的自定义模型,需要提供示例言语表。言语不一定要是完整的或者语法正确的,但必须准确反映生产环境中预期的口头输入。如果想要增大某些字词的权重,可添加包含这些特定字词的多个句子。一般原则是,训练文本越接近生产环境中预期的实际文本,模型适应越有效。应在训练文本中包含要增强的行话和短语。如果可能,尽量将一个句子或关键字控制在单独的一行中。对于重要的关键字和短语(例如产品名),可以将其复制几次。但请记住,不要复制太多次,这可能会影响总体识别率。此外,还需要考虑以下限制:请避免将字符、单词或词组重复三次以上。

     陕西量子语音服务

与语音服务相关的文章
与语音服务相关的产品
与语音服务相关的新闻
与语音服务相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责