语音服务基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 加工定制
  • 工作电源电压
  • 5
语音服务企业商机

    房间102中的灯)。本发明一实施例的物联网设备语音控制方法的信号流程。在步骤301中,说话人向物联网主控设备10发送语音消息。接着,在步骤302中,物联网主控设备10确定语音控制请求。接着,在步骤303中,物联网主控设备10发送语音控制请求至语音服务端30。接着,在步骤304中,语音服务端确定语音消息所对应的语音控制意图信息。关于步骤301~304的操作,可以参照上面其他实施例中所描述的操作,在此便不赘述。接着,在步骤305中,语音服务端30发送目标设备用户信息至物联网运营端40。这里,在物联网运营端存储有多个设备列表,例如可以是由各个用户分别针对其所管理的不同区域内的各个物联网受控设备进行注册的。并且,物联网运营端40可以查询相应的目标设备列表。接着,在步骤306中,语音服务端30从物联网运营端40接收相应于目标设备用户信息的目标设备列表。例如,物联网运营端40可以通过遍历查询来对目标设备列表进行调用。接着,在步骤307中,语音服务端30基于目标设备列表和目标设备区域配置信息来确定相应的目标受控设备信息。接着,在步骤308中,语音服务端30确定用于指示语音控制意图信息和目标受控设备信息的控制请求指令。物联网主控设备可以将设备用户信息、设备区域配置信息和相应的各个物联网受控设备信息发送至语音服务端。吉林语音服务

    则新的基础模型的训练时间将会大幅增加,并且可能会轻易地从几个小时增加到几天及更长时间。如果语音服务订阅所在区域没有于训练的硬件,则更是如此。如果你面临以上段落中所述的问题,则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。在带有于训练的硬件的区域中,语音服务将使用多20小时的音频进行训练。在其他区域中,多只会使用8小时的音频。上传数据:若要上传数据,请导航到自定义语音服务识别门户。创建项目后,导航到“语音服务数据集”选项卡,然后单击“上传数据”以启动向导并创建个数据集。在上传数据之前,系统会要求你为数据集选择语音服务数据类型。首先需要指定要将数据集用于“训练”还是“测试”。还有多种类型的数据可供上传并用于“训练”或“测试”。上传的每个数据集必须符合所选数据类型的要求。必须先将数据设置为正确格式再上传它。格式正确的数据可确保自定义语音识别服务对其进行准确处理。以下部分列出了要求。上传数据集后,可以使用几个选项:可以导航到“训练自定义模型”选项卡来训练自定义模型。

     吉林新一代语音服务客户可以在智能手机上无缝、安全地输入或查看信息,以提高通话的准确性和安全性。

    基于所述目标设备区域配置信息从所述目标设备列表中确定目标受控设备信息;基于所述语音消息,对所述目标受控设备信息所对应的目标物联网受控设备进行操控。第二方面,本发明实施例提供一种语音服务端,包括:获取单元,被配置为获取基于物联网主控设备所确定的语音控制请求,所述语音控制请求包括语音消息、目标设备用户信息和目标设备区域配置信息;用户设备确定单元,被配置为确定所述目标设备用户信息所对应的目标设备列表,所述目标设备列表包括针对所述目标设备用户信息的在多个设备区域配置信息下的多个受控设备信息;目标受控设备确定单元,被配置为基于所述目标设备区域配置信息从所述目标设备列表中确定目标受控设备信息;操控单元,被配置为基于所述语音消息,对所述目标受控设备信息所对应的目标物联网受控设备进行操控。第三方面,本发明实施例提供一种电子设备,其包括:至少一个处理器,以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述方法的步骤。第四方面,本发明实施例提供一种存储介质,其上存储有计算机程序。

转发服务器跟原有系统完全解耦,原系统改造也很小,可以实现高可用。缺点是转发服务器起码有两台机器,也会增加接收方数据去重的复杂度。现在我们梳理一下,要实现一个支持百万级的语音聊天房间,整体的架构如下所示:1.用户创建房间。通过目录服务器创建,实际上是在数据库中增加一条set_id和room_id的映射记录。2.用户请求进入房间。通过目录服务器查询应该连到哪台语音服务器,具体的逻辑由负载均衡服务器实现。简单描述为:查询到room_id所在的set的所有语音服务器,根据负载情况和就近接入原则,选择几台语音服务器的ip和端口返回。3.用户进入房间。客户端连接语音服务器,语音服务器将进房请求透传给房间服务器,房间服务器记录房间架构信息,并定期同步给set内所有的语音服务器。4.对于小房间,通过set内转发语音实现。对于跨set的大房间,由多个房间服务器协同工作实现。房间服务器之间不需要互相通信,它们只要在set内按规则挑选一台语音服务器作为broker。Broker收到语音数据时,除了常规的set内转发外,还将数据发给转发服务器。转发服务器知道房间所在的set列表和每个set的broker,从而实现跨set转发。GStreamer 会先解压缩音频,然后再将音频作为原始 PCM 通过网络发送到语音服务。

    MTPE)、机器翻译引擎评估等。Resource:Nimdzi,2021.趋势2:促使语音方面的语言服务需求飙升(包含口译、配音、字幕等),相关技术也蓬勃发展对配音、口译及视听服务市场产生了巨大影响。世界各地的旅行禁令、封城使语言服务需求不减反增。宅经济更进一步推升口译、配音、字幕等视听服务需求。远程同传(RSI)和远程视频口译(VRI)蓬勃发展,使Zoom、KUDO、Interprefy、Interactio、VoiceBoxer、Cloudbreak-Martti等虚拟口译技术提供商(VIT)不只获得了语言服务市场的关注,更受到投资市场的青睐。Cloudbreak-Martti:2020年2月获得1000万美元融资KUDO:2020年7月获得600万美元,2021年3月获得2100万美元融资Interactio:2021年5月获得3000万美元融资另外,各家技术提供商也开始关注并开发机器口译和计算机辅助口译等技术。Resource:Nimdzi,2021.催热宅经济(数字学习及媒体娱乐),视听翻译技术的需求也随之增长,包括远程配音、语音识别转写、文字转语音、自动字幕等。视听串流平台Netflix也在6月份发布了配音和字幕本地化工作规范,其中便整合了各种视听翻译技术。Resource:Nimdzi,2021.趋势3:AI赋能的TMS成为各家技术提供商的发展重点翻译管理系统。

    三网合一,即同一服务提供商向客户提供宽带上网、视频和语音服务。湖南无限语音服务供应

语音服务端的物联网设备语音控制方法。吉林语音服务

    准备自定义语音服务识别的数据数据多样性:用来测试和训练自定义模型的文本和音频需要包含你的模型需要识别的来自各种说话人和场景的示例。收集进行自定义模型测试和训练所需的数据时,请考虑以下因素:你的文本和语音音频数据需要涵盖用户在与你的模型互动时所用的各种语言陈述。例如,一个能升高和降低温度的模型需要针对人们在请求进行这种更改时会用的陈述进行训练。你的数据需要包含模型需要识别的所有语音变型。许多因素可能会改变语音,包括口音、方言、语言混合、年龄、性别、语音音调、紧张程度和当日时间。你包括的示例必须来自使用模型时所在的各种环境(室内、户外、公路噪音)。必须使用生产系统将要使用的硬件设备来收集音频。如果你的模型需要识别在不同质量的录音设备上录制的语音,则你提供的用来训练模型的音频数据也必须能够这些不同的场景。以后可以向模型中添加更多数据,但要注意使数据集保持多样性并且能够你的项目需求。将不在你的自定义模型识别需求范围内的数据包括在内可能会损害整体识别质量,因此请不要包括你的模型不需要转录的数据。基于部分场景训练的模型只能在这些场景中很好地执行。

     吉林语音服务

与语音服务相关的文章
与语音服务相关的产品
与语音服务相关的新闻
与语音服务相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责