就得到了非线性滤波器的比较好解,它具有小二乘估计形式。第三步构建耦合机制。在介绍耦合机制之前,先说一下我对这种耦合机制的期望特性。我希望在声学系统的线性度非常好的情况下,线性滤波器起到主导作用,而非线性滤波器处于休眠的状态,或者关闭的状态;反过来,当声学系统的非线性很强时,希望非线性滤波器起到主导作用,而线性滤波器处于半休眠状态。实际声学系统往往是非线性与线性两种状态的不断交替、叠加,因此我们希望构建一种机制来对这两种状态进行耦合控制。为了设计耦合机制,就必须对线性度和非线性度特征进行度量。因此,我们定义了两个因子,分别是线性度因子和非线性度因子,对应左边的这两个方程。而我们进行耦合控制的基本的思想就是将这两个因子的值代入到NLMS算法和小二乘算法之中,调整二者的学习速度。为了便于大家对双耦合声学回声消除算法有一个定性的认识,我又画了一组曲线,左边一组对应的是线性回声的场景。我们首先来看一下NLMS算法,黄色曲线真实的系统传递函数,红色曲线是NLMS算法的结果。可以看到,在线性场景下,NLMS算法得到的线性滤波器可以有效逼近真实传递函数,进而能够有效抑制线性声学回声。下面再来看一下这个双耦合算法。
介绍双耦合声学回声消除算法。天津识别声学回声噪声
为什么要费那么大周折去抑制回声?这个话题应该不言而喻了。会议、语音扩声讲究的即是STI语音清晰度(可懂度),而回声是语言清晰度的比较大。设想踩脚跟式的语音信号传达到耳朵,听者难受,讲者费劲,对于这样的语音会议来说,那必将是一场灾难。我们把声学回声消除这个技术变成一张实体的插件(设备插卡),在系统中,为实现次回声过滤(过滤回声源则过滤多次回声)。这个技术应该插入在系统的哪个环节呢?我们不妨来找找系统中具备近乎相同/相似信号的一级进出环节。我们并不难发现一组具备相似信号的输入输出环节。而AEC技术认为,在这里对回声下手是治根的办法!市面上有多种类的回声消除器,也有部分抑制器,其算法和解决办法各有不同,本文就不详细阐释了。须知,通过对具有相似性极高的输入、输出信号的比对,约掉这一具备相似信号的输出,即切断了回授的根源,A地将不再听到回声现象。安徽识别声学回声供应商家非线性声学回声系统建模。
23.避免厅堂音质缺陷的方法主要是从厅堂的体形设计和吸声材料布置两方面入手,消除产生音质缺陷的条件。例如,为了消除回声,应在可能引起回声的部位布置强吸声材料,使反射声减弱经;另一种方法是调整反射面角度,将后墙与顶棚交接处作成比较大的倾角,将声音反射给后区观众,彻底消除回声,取得化害为利的效果。为了消除声聚集现象,应尽量控制厅堂界的曲面弧度,采用凸形结构,并在弧面上布置合适的吸音材料。为了消除音质缺陷,可根据厅堂内声源的位置。采用几何作图法,用声线的分布找出各种声缺陷的条件和部位,再采取必要的措施进行抑制。24.回声指强度和时间差大到足可以引起听觉将它与直达声区分开来的反射声。从单一声源产生的一连串可分辩的回声则叫多重回声,当室内两个界面之间距离大于一定数值,且吸声量不足时,在其中间声源发出的声音就可能产生多重回声。回声会影响听音注意力,影响声音的清晰度,破坏立体声聆听的声像定位效果。25.颤动回声当声源在平行界面或一平面与一凹面之间发生反射,界面距离大于一定数值时会出现颤动回声。发生颤动回声时,声音有连续的重叠声,并有颤抖的感觉。颤动回声会引起听力疲劳,使人感到厌烦。
26.声聚焦指凹面对声波形成集中反射、使反射声聚集于某个区域,造成声音在该区域特别响的现象。声聚集造成声能过分集中,使声能汇聚点的声音嘈杂,而其他区域听音条件变差,扩大了声场不均匀度,严重影响听众的听音条件。27.声影区由于障碍物或折射的原因,产生声音辐射不到的区域。在声影区内声压级很低,音量很轻。因此声影区的存在也是声压不均匀的原因。28.声染色由于室内频率响应的变化,使原始声音被赋予外加的音色特点。容积小的听音室,本征频率在低频端分布不够密集连续,因此在低频段易产生“共振”的音染现象。共振现象产生的声染色效应,引起声音信号的失真,产生主观听感上的厌恶情绪,严重影响听音效果。29.声闸(声锁)两道门之间保留较大的间距做成通常所称的“门斗”,并对其内表面做强吸声处理,以提高隔声效果,此“门斗”称为声闸(声锁).30.声桥材料直接固定在龙骨上时,受声一侧板的振动会通过龙骨传到另一侧板,这种象桥一样传递声能的现象被称为声桥。31.浮筑结构(房中房)通常只有外部环境很差或声学环境要求较高的情况下才会考虑浮筑结构,即在原房间中再建一个房间(即内套和外套)。分轻质和重质两种。内套和外套之间设置弹性垫层。
的是声学回声的路径。
首先是优化准则。NLMS算法是基于小均方误差准则,而双耦合算法是基于小平均短时累计误差准则,所以他们的优化准则是不一样的。第二个就是理论的比较好解,NLMS算法具有Wiener-Hopf方程解,而双耦合算法的线性滤波器也具有Wiener-Hopf方程解,非线性滤波器具有小二乘解。第三个维度就是运算量,NLMS运算量是O(M),M是滤波器的阶数,而双耦合算法运算量后面会多一个O(N2),因为他有两个滤波器,N是非线性滤波器的阶数,这里的平方是因为小二乘需要对矩阵进行求逆运算,所以它的运算量比线性的NLMS运算量要大很多。第三个就是控制机制,NLMS算法只有一个滤波器,它的控制主要是通过调整步长来实现的,控制起来要相对简单。而双耦合算法需要对两套滤波器进行耦合控制,控制的复杂度要高很多。实验结果分析,这里我主要是分了两个实验场景比较双耦合算法和NLMS算法的性能,个是单讲测试场景,第二个就是双讲测试场景。首先看一下单讲测试场景,个示例是针对强非线性失真的情况,左边分别原信号的语谱,NLMS算法进行回声消除之后的语谱、双耦合算法的语谱。颜色越深,能量越大。右边这个的是回声抑制比,值越大越好,红色的曲线是双耦合算法的回声抑制比。
便于大家对双耦合声学回声消除算法有一个定性的认识。天津识别声学回声噪声
右边的非线性声学回声场景。天津识别声学回声噪声
达到,接近于1。黄色曲线,对应的数据具有比较弱的非线性失真,所以在时间T变大了之后,短期相关度逐渐降低,趋于一个相对平稳的值。而红色曲线是我们选的一条具有强非线性失真的数据,为了对这三组数据进行有效对比,我们还给出了一条蓝色曲线,这条曲线是信号与噪声的短时相关度,它在整个时间T范围内都很小。通过这样一组曲线的对比,会得到两个结论,个结论就是我们构建的短时相关度函数,能够相对客观反映这个声学系统的线性度特征,线性度越好,这个值会越大。第二个结论:对于非线性失真很强的系统,其在短时观测窗内(如T<100ms)依然具有较强的相关度,这从红色的曲线可以看出来。也正是基于这样的特征,我们接下来就构建了一种新的误差函数,称之为“短时累积误差函数”。大家可以注意到我们在一个观测时间窗T内,对残差进行了累积。基于这样的误差函数,我们进一步构建了一种新的优化准则,称为“小平均短时累计误差准则”。我们希望通过优化准则的约束,得到的滤波器权系数能够满足两个特性,个特性是滤波器在统计意义上能够达到比较好,即全局比较好,因此我们在目标函数里加入了数学期望运算。同时。
天津识别声学回声噪声
深圳鱼亮科技有限公司成立于2017-11-03,同时启动了以Bothlent为主的智能家居,语音识别算法,机器人交互系统,降噪产业布局。深圳鱼亮科技经营业绩遍布国内诸多地区地区,业务布局涵盖智能家居,语音识别算法,机器人交互系统,降噪等板块。我们强化内部资源整合与业务协同,致力于智能家居,语音识别算法,机器人交互系统,降噪等实现一体化,建立了成熟的智能家居,语音识别算法,机器人交互系统,降噪运营及风险管理体系,累积了丰富的通信产品行业管理经验,拥有一大批专业人才。深圳鱼亮科技有限公司业务范围涉及语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。等多个环节,在国内通信产品行业拥有综合优势。在智能家居,语音识别算法,机器人交互系统,降噪等领域完成了众多可靠项目。