声学回声基本参数
  • 品牌
  • Bothlent
  • 型号
  • 123
  • 封装形式
  • DIP
声学回声企业商机

    喇叭发声单元跟麦克接收单元之间,通常是需要做隔振处理的,如果没有隔振处理的话,那么在喇叭发声的过程中,他所产生的振动会通过物理方式传递到麦克接收端。对麦克接收到的声学信号进行调制,而这种振动本质上是一种随机的、非线性的振动,所以它必然会带来非线性失真。手机声学特性调研我们之前针对市面上主要的手机机型做过一次调研,主要调查声学特性。结果我们很惊讶地发现,市面上超过半数的手机机型,声学特性不够理想,对应这里面的“较差”和“极差”这两档。我们平时用手机开外音玩游戏,或者语音通话时,经常会出现漏回声问题和双讲剪切问题,就与手机声学特性不佳有直接联系。当然这组数据只是针对手机这种电子产品,市面上类似于手机这样的电子产品还有很多,它们应该也有类似的问题。这组数据告诉我们,非线性失真问题在我们生活中的电子产品里是一个普遍存在的问题,我相信对这个问题的研究将会是一个很有价值也很有意义的方向。 回到前面的这个声学回声路径图。天津录播声学回声识别

天津录播声学回声识别,声学回声

    而正是这两级客观存在的物理声学现象,造就了我们所讨论的内容。在远程会议系统的终端(本地),为了实现多人互动、多人拾音等目的,系统声音免不了被放大还原,而在诸如此类的放大系统中,为本地音箱能够听到远端声音,并能把本地拾音信号传送到远端而互通。众所周知,话筒在拾取到放大后的音箱信号后,再次回授、无限循环而产生反馈现象,而系统在均衡声场后,该现象其实是可以得到明显改观的。但话筒的拾音灵敏度是不是可以无限大呢?不是,在足够电平条件下,它始终会因拾取到具有相干性频率相位关系的输入信号而建立起回授。上述啸叫现象并不是本文重点,但它为我们讨论接下来的话题提供了一个前提,那就是(同一个声场环境中)话筒和音箱无论怎么摆都无法做到完全的隔离,更别说空间声场条件有限的小中型会议室了。在一套有扩声、有拾音的远程会议系统中,为了防止信号回授,我们通常会有意识地将远端输入信号不再路由给远端输出。然而无法抗拒的是,本地话筒因拾取到远端传送至本地扩声的信号,仍可将声音重新传送至远端。这也是一种回授,明显的远程回授现象可使得系统发生自激震荡。通过一个简易的远程音频传输示意图。能帮助我们更容易地理解声音信号是怎样的流向。

     语音识别声学回声噪声的是声学回声的路径。

天津录播声学回声识别,声学回声

    n)中的回声是扬声器播放远端参考x(n),又被麦克风采集到的形成的,也就意味着在近端数据还未采集进来之前,远端数据缓冲区中已经躺着N帧x(n)了,这个天然的延时可以约等于音频信号从准备渲染到被麦克风采集到的时间,不同设备这个延时是不等的。苹果设备延时较小,基本在120ms左右,Android设备普遍在200ms左右,低端机型上会有300ms左右甚至以上。(2)远近端非因果为什么会导致回声?从(1)中可以认为,正常情况下当前帧近端信号为了找到与之对齐的远端信号,必须在远端缓冲区沿着写指针向前查找。如果此时设备采集丢数据,远端数据会迅速消耗,导致新来的近端帧在向前查找时,已经找不到与之对齐的远端参考帧了,会导致后续各模块工作异常。如图10(a)表示正常延时情况,(b)表示非因果。WebRTCAEC中的延时调整策略关键而且复杂,涉及到固定延时调整,大延时检测,以及线性滤波器延时估计。三者的关系如下:①固定延时调整只会发生在开始AEC算法开始处理之前,而且调整一次。如会议盒子等固定的硬件设备延时基本是固定的,可以通过直接减去固定的延时的方法缩小延时估计范围,使之快速来到滤波器覆盖的延时范围之内。下面结合代码来看看固定延时的调整过程。

   

    只需要近端采集信号即可,傲娇的回声消除需要同时输入近端信号与远端参考信号。有同学会问已知了远端参考信号,为什么不能用噪声抑制方法处理呢,直接从频域减掉远端信号的频谱不就可以了吗?行为近端信号s(n),已经混合了近端人声和扬声器播放出来的远端信号,黄色框中已经标出对齐之后的远端信号,其语音表达的内容一致,但是频谱和幅度(明显经过扬声器放大之后声音能量很高)均不一致,意思就是:参考的远端信号与扬声器播放出来的远端信号已经是“貌合神离”了,与降噪的方法相结合也是不错的思路,但是直接套用降噪的方法显然会造成回声残留与双讲部分严重的抑制。接下来,我们来看看WebRTC科学家是怎么做的吧。信号处理流程WebRTCAEC算法包含了延时调整策略,线性回声估计,非线性回声抑制3个部分。回声消除本质上更像是音源分离,我们期望从混合的近端信号中消除不需要的远端信号,保留近端人声发送到远端,但是WebRTC工程师们更倾向于将两个人交流的过程理解为一问一答的交替说话,存在远近端同时连续说话的情况并不多(即保单讲轻双讲)。因此只需要区分远近端说话区域就可以通过一些手段消除绝大多数远端回声。

     非线性声学回声消除的技术难点。

天津录播声学回声识别,声学回声

    噪声抑制和声源分离同属于语音增强的范畴,如果把噪声理解为广义的噪声三者之间的关系,噪声抑制需要准确估计出噪声信号,其中平稳噪声可以通过语音检测判别有话端与无话端的状态来动态更新噪声信号,进而参与降噪,常用的手段是基于谱减法(即在原始信号的基础上减去估计出来的噪声所占的成分)的一系列改进方法,其效果依赖于对噪声信号估计的准确性。对于非平稳噪声,目前用的较多的就是基于递归神经网络的深度学习方法,很多Windows设备上都内置了基于多麦克风阵列的降噪的算法。效果上,为了保证音质,噪声抑制允许噪声残留,只要比原始信号信噪比高,噪且听觉上失真无感知即可。单声道的声源分离技术起源于传说中的鸡尾酒会效应,是指人的一种听力选择能力,在这种情况下,注意力集中在某一个人的谈话之中而忽略背景中其他的对话或噪音。该效应揭示了人类听觉系统中令人惊奇的能力,即我们可以在噪声中谈话。科学家们一直在致力于用技术手段从单声道录音中分离出各种成分,一直以来的难点,随着机器学习技术的应用,使得该技术慢慢变成了可能,但是较高的计算复杂度等原因,距离RTC这种低延时系统中的商用还是有一些距离。噪声抑制与声源分离都是单源输入。

     认识了非线性声学回声、产生的原因、研究现状以及技术难点。语音识别声学回声噪声

什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题。天津录播声学回声识别

    对麦克接收到的声学信号进行调制,而这种振动本质上是一种随机的、非线性的振动,所以它必然会带来非线性失真。3.手机声学特性调研,我们之前针对市面上主要的手机机型做过一次调研,主要调查声学特性。结果我们很惊讶地发现,市面上超过半数的手机机型,声学特性不够理想,对应这里面的“较差”和“极差”这两档。我们平时用手机开外音玩游戏,或者语音通话时,经常会出现漏回声问题和双讲剪切问题,就与手机声学特性不佳有直接联系。当然这组数据只是针对手机这种电子产品,市面上类似于手机这样的电子产品还有很多,它们应该也有类似的问题。这组数据告诉我们,非线性失真问题在我们生活中的电子产品里是一个普遍存在的问题,我相信对这个问题的研究将会是一个很有价值也很有意义的方向。4.非线性声学回声消除技术研究现状我之前在IEEE的数字图书馆里搜索了“声学回声消除”的相关文献,一共找到了3402篇,其中有会议论文,还有期刊、杂志、书等。我用同样的方法搜索了“非线声学回声消除”,结果只找到了254篇文献,不到前面文献的1/10,这意味着非线性声学回声消除技术在整个声学回声消除领域是一个相对比较冷的研究方向。既然这个方向很有价值也很有意义。

     天津录播声学回声识别

深圳鱼亮科技有限公司成立于2017-11-03年,在此之前我们已在智能家居,语音识别算法,机器人交互系统,降噪行业中有了多年的生产和服务经验,深受经销商和客户的好评。我们从一个名不见经传的小公司,慢慢的适应了市场的需求,得到了越来越多的客户认可。公司现在主要提供智能家居,语音识别算法,机器人交互系统,降噪等业务,从业人员均有智能家居,语音识别算法,机器人交互系统,降噪行内多年经验。公司员工技术娴熟、责任心强。公司秉承客户是上帝的原则,急客户所急,想客户所想,热情服务。公司与行业上下游之间建立了长久亲密的合作关系,确保智能家居,语音识别算法,机器人交互系统,降噪在技术上与行业内保持同步。产品质量按照行业标准进行研发生产,绝不因价格而放弃质量和声誉。在市场竞争日趋激烈的现在,我们承诺保证智能家居,语音识别算法,机器人交互系统,降噪质量和服务,再创佳绩是我们一直的追求,我们真诚的为客户提供真诚的服务,欢迎各位新老客户来我公司参观指导。

与声学回声相关的文章
浙江光纤数据声学回声是什么
浙江光纤数据声学回声是什么

喇叭发声单元跟麦克接收单元之间,通常是需要做隔振处理的,如果没有隔振处理的话,那么在喇叭发声的过程中,他所产生的振动会通过物理方式传递到麦克接收端。对麦克接收到的声学信号进行调制,而这种振动本质上是一种随机的、非线性的振动,所以它必然会带来非线性失真。手机声学特性调研我们之前针对市面上主...

与声学回声相关的新闻
  • 声学回声是指声波在空间中反射后产生的回声。当声波遇到一个障碍物时,一部分能量被反射回来,形成回声。声学回声可以用于测量距离、检测物体的位置和形状等。在医学上,声学回声被广泛应用于超声诊断,可以通过声波的反射来生成人体内部的图像。在建筑设计中,声学回声也被用于评估房间的声学性能,以确保声音的传播和吸收...
  • 什么是非线性声学回声?,什么是非线性的声学回声?这里我给出了一张图,的是声学回声的路径图,图的左边对应的是发射端,右边对应的是接收端。我们发出的信号首先要经过D/A变换,从数字域变换到模拟域,然后再经过功率放大器,放大之后驱动喇叭,这样就会发出声音。发出来的声音经过空气信道传播之后,到了...
  • 安徽录播声学回声 2024-05-29 06:06:27
    只需要近端采集信号即可,傲娇的回声消除需要同时输入近端信号与远端参考信号。有同学会问已知了远端参考信号,为什么不能用噪声抑制方法处理呢,直接从频域减掉远端信号的频谱不就可以了吗?行为近端信号s(n),已经混合了近端人声和扬声器播放出来的远端信号,黄色框中已经标出对齐之后的远端信号,其语音表达的内容一...
  • 江苏手机声学回声跟读 2024-05-26 04:05:56
    非线性声学回声产生的原因非线性声学回声产生的原因,我一共列了两条原因。原因之一,声学器件的小型化与廉价化,这里所指的声学器件就是前面B里面提到的功率放大器和喇叭。为什么声学器件的小型化容易产生非线性的失真呢?这个需要从喇叭发声的基本原理说起,我们都知道声波的本质是一种物理振动,而喇叭发声...
与声学回声相关的问题
信息来源于互联网 本站不为信息真实性负责