语音识别基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 工作电源电压
  • 5
语音识别企业商机

    听到人类听不到的世界。语音识别的产业历程语音识别这半个多世纪的产业历程中,其有三个关键节点,两个和技术有关,一个和应用有关。,开发了个基于模型的语音识别系统,当时实现这一系统。虽然混合高斯模型效果得到持续改善,而被应用到语音识别中,并且确实提升了语音识别的效果,但实际上语音识别已经遭遇了技术天花板,识别的准确率很难超过90%。很多人可能还记得,都曾经推出和语音识别相关的软件,但终并未取得成功。第二个关键节点是深度学习被系统应用到语音识别领域中。这导致识别的精度再次大幅提升,终突破90%,并且在标准环境下逼近98%。有意思的是,尽管技术取得了突破,也涌现出了一些与此相关的产品,但与其引起的关注度相比,这些产品实际取得的成绩则要逊色得多。刚一面世的时候,这会对搜索业务产生根本性威胁,但事实上直到的面世,这种根本性威胁才真的有了具体的载体。第三个关键点正是出现。

     语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等。青海英语语音识别

    Google将其应用于语音识别领域,取得了非常好的效果,将词错误率降低至。如下图所示,Google提出新系统的框架由三个部分组成:Encoder编码器组件,它和标准的声学模型相似,输入的是语音信号的时频特征;经过一系列神经网络,映射成高级特征henc,然后传递给Attention组件,其使用henc特征学习输入x和预测子单元之间的对齐方式,子单元可以是一个音素或一个字。,attention模块的输出传递给Decoder,生成一系列假设词的概率分布,类似于传统的语言模型。端到端技术的突破,不再需要HMM来描述音素内部状态的变化,而是将语音识别的所有模块统一成神经网络模型,使语音识别朝着更简单、更高效、更准确的方向发展。语音识别的技术现状目前,主流语音识别框架还是由3个部分组成:声学模型、语言模型和解码器,有些框架也包括前端处理和后处理。随着各种深度神经网络以及端到端技术的兴起,声学模型是近几年非常热门的方向,业界都纷纷发布自己新的声学模型结构,刷新各个数据库的识别记录。由于中文语音识别的复杂性,国内在声学模型的研究进展相对更快一些,主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN)。

    广东c语音识别实时语音识别适用于长句语音输入、音视频字幕、会议等场景。

    该芯片集成了语音识别处理器和一些外部电路,包括A/D、D/A转换器、麦克风接口、声音输出接口等,而且可以播放MP3。不需要外接任何的辅助芯片如FLASH,RAM等,直接集成到产品中即可以实现语音识别、声控、人机对话功能。MCU通信采用SPI总线方式,时钟不能超过1.5MHz。麦克风工作电路,音频输出只需将扬声器连接到SPOP和SPON即可。使用SPI总线方式时,LD3320的MD要设为高电平,SPIS设为低电平。SPI总线的引脚有SDI,SDO,SDCK以及SCS。INTB为中断端口,当有识别结果或MP3数据不足时,会触发中断,通知MCU处理。RSTB引脚是LD3320复位端,低电平有效。LED1,LED2作为上电指示灯。3软件系统设计软件设计主要有两部分,分别为移植LD3320官方代码和编写语音识别应用程序。3.1移植LD3320源代码LD3320源代码是基于51单片机实现的,SPI部分采用的是软件模拟方式,但在播放MP3数据时会有停顿现象,原因是51单片机主频较低,导致SPI速率很慢,不能及时更新MP3数据。移植到ATMEGA128需要修改底层寄存器读写函数、中断函数等。底层驱动在Reg_RW.c文件中,首先在Reg_RW.h使用HARD_PARA_PORT宏定义,以支持硬件SPI。

Bothlent(⻥亮)是专注于提供AI⼯程化的平台,旨在汇聚⼀批跨⾏业的专业前列⼈才,为⼴⼤AI⾏业B端客户、IT从业者、在校⼤学⽣提供⼯程化加速⽅案、教育培训和咨询等服务。⻥亮科技关注语⾳识别、⼈⼯智能、机器学习等前沿科技,致⼒打造国内⼀流AI技术服务商品牌。公司秉承“价值驱动连接、连接创造价值”的理念,重品牌,产品发布以来迅速在市场上崛起,市场占有率不断攀升,并快速取得包括科⼤讯⻜、国芯、FireFly等平台及技术社区在内的渠道合作。未来,我们将进一步加大投入智能识别、大数据、云计算、AI工业4.0前沿技术,融合智慧城市、智慧社区、养老服务等应用组合模式,缔造AI智能机器人服务新时代。由于语音交互提供了更自然、更便利、更高效的沟通形式。

    解码就是在该空间进行搜索的过程。由于该理论相对成熟,更多的是工程优化的问题,所以不论是学术还是产业目前关注的较少。语音识别的技术趋势语音识别主要趋于远场化和融合化的方向发展,但在远场可靠性还有很多难点没有突破,比如多轮交互、多人噪杂等场景还有待突破,还有需求较为迫切的人声分离等技术。新的技术应该彻底解决这些问题,让机器听觉远超人类的感知能力。这不能只是算法的进步,需要整个产业链的共同技术升级,包括更为先进的传感器和算力更强的芯片。单从远场语音识别技术来看,仍然存在很多挑战,包括:(1)回声消除技术。由于喇叭非线性失真的存在,单纯依靠信号处理手段很难将回声消除干净,这也阻碍了语音交互系统的推广,现有的基于深度学习的回声消除技术都没有考虑相位信息,直接求取的是各个频带上的增益,能否利用深度学习将非线性失真进行拟合,同时结合信号处理手段可能是一个好的方向。(2)噪声下的语音识别仍有待突破。信号处理擅长处理线性问题,深度学习擅长处理非线性问题,而实际问题一定是线性和非线性的叠加,因此一定是两者融合才有可能更好地解决噪声下的语音识别问题。。

   近年来,该领域受益于深度学习和大数据技术的进步。广西语音识别机

一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。青海英语语音识别

    训练通常来讲都是离线完成的,将海量的未知语音通过话筒变成信号之后加在识别系统的输入端,经过处理后再根据语音特点建立模型,对输入的信号进行分析,并提取信号中的特征,在此基础上建立语音识别所需的模板。识别则通常是在线完成的,对用户实时语音进行自动识别。这个过程又基本可以分为“前端”和“后端”两个模块。前端主要的作用就是进行端点检测、降噪、特征提取等。后端的主要作用是利用训练好的“声音模型”和“语音模型”对用户的语音特征向量进行统计模式识别,得到其中包含的文字信息。语音识别技术的应用语音识别技术有着应用领域和市场前景。在语音输入控制系统中,它使得人们可以甩掉键盘,通过识别语音中的要求、请求、命令或询问来作出正确的响应,这样既可以克服人工键盘输入速度慢,极易出差错的缺点,又有利于缩短系统的反应时间,使人机交流变得简便易行,比如用于声控语音拨号系统、声控智能玩具、智能家电等领域。在智能对话查询系统中,人们通过语音命令,可以方便地从远端的数据库系统中查询与提取有关信息,享受自然、友好的数据库检索服务,例如信息网络查询、医疗服务、银行服务等。语音识别技术还可以应用于自动口语翻译。青海英语语音识别

与语音识别相关的文章
与语音识别相关的产品
与语音识别相关的新闻
与语音识别相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责