在人与机器设备交互中,言语是方便自然并且直接的方式之一。同时随着技术的进步,越来越多的人们也期望设备能够具备与人进行言语沟通的能力,因此语音识别这一技术也越来越受到人们关注。尤其随着深度学习技术应用在语音识别技术中,使得语音识别的性能得到了很大的提升,也使得语音识别技术的普及成为了现实,深圳鱼亮科技专业语音识别技术提供商,提供:语音唤醒,语音识别,文字翻译,AI智能会议,信号处理,降噪等语音识别技术。一些语音识别系统需要“训练”(也称为“注册”),其中个体说话者将文本或孤立的词汇读入系统。深圳无限语音识别标准
主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN),DFCNN使用大量的卷积直接对整句语音信号进行建模,主要借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多卷积池化层对,从而可以看到更多的历史信息。2018年,阿里提出LFR-DFSMN(LowerFrameRate-DeepFeedforwardSequentialMemoryNetworks)。该模型将低帧率算法和DFSMN算法进行融合,语音识别错误率相比上一代技术降低20%,解码速度提升3倍。FSMN通过在FNN的隐层添加一些可学习的记忆模块,从而可以有效的对语音的长时相关性进行建模。而DFSMN是通过跳转避免深层网络的梯度消失问题,可以训练出更深层的网络结构。2019年,百度提出了流式多级的截断注意力模型SMLTA,该模型是在LSTM和CTC的基础上引入了注意力机制来获取更大范围和更有层次的上下文信息。其中流式表示可以直接对语音进行一个小片段一个小片段的增量解码;多级表示堆叠多层注意力模型;截断则表示利用CTC模型的尖峰信息,把语音切割成一个一个小片段,注意力模型和解码可以在这些小片段上展开。在线语音识别率上。浙江语音识别工具语音识别是门综合性学科,包括声学、语音学、语言学、信号处理、概率统计、信息论、模式识别和深度学习等。
MarkGales和SteveYoung在2007年对HMM在语音识别中的应用做了详细阐述。随着统计模型的成功应用,HMM开始了对语音识别数十年的统治,直到现今仍被看作是领域内的主流技术。在DARPA的语音研究计划的资助下,又诞生了一批的语音识别系统,其中包括李开复()在卡耐基梅隆大学攻读博士学位时开发的SPHINX系统。该系统也是基于统计模型的非特定说话人连续语音识别系统,其采用了如下技术:①用HMM对语音状态的转移概率建模;②用高斯混合模型(GaussianMixtureModel,GMM)对语音状态的观察值概率建模。这种把上述二者相结合的方法,称为高斯混合模型-隐马尔可夫模型(GaussianMixtureModel-HiddenMarkovModel,GMM-HMM)[9]。在深度学习热潮出现之前,GMM-HMM一直是语音识别主流的技术。值得注意的是,在20世纪80年代末,随着分布式知识表达和反向传播算法(Backpropagation,BP)的提出,解决了非线性学习问题,于是关于神经网络的研究兴起,人工神经网络(ArtificialNeuralNetwork,ANN)被应用到语音领域并且掀起了一定的热潮。这是具有里程碑意义的事件。它为若干年后深度学习在语音识别中的崛起奠定了一定的基础。但是由于人工神经网络其自身的缺陷还未得到完全解决。
Siri、Alexa等虚拟助手的出现,让自动语音识别系统得到了更广的运用与发展。自动语音识别(ASR)是一种将口语转换为文本的过程。该技术正在不断应用于即时通讯应用程序、搜索引擎、车载系统和家庭自动化中。尽管所有这些系统都依赖于略有不同的技术流程,但这些所有系统的第一步都是相同的:捕获语音数据并将其转换为机器可读的文本。但ASR系统如何工作?它如何学会辨别语音?本文将简要介绍自动语音识别。我们将研究语音转换成文本的过程、如何构建ASR系统以及未来对ASR技术的期望。那么,我们开始吧!ASR系统:它们如何运作?因此,从基础层面来看,我们知道自动语音识别看起来如下:音频数据输入,文本数据输出。但是,从输入到输出,音频数据需要变成机器可读的数据。这意味着数据通过声学模型和语言模型进行发送。这两个过程是这样的:声学模型确定了语言中音频信号和语音单位之间的关系,而语言模型将声音与单词及单词序列进行匹配。这两个模型允许ASR系统对音频输入进行概率检查,以预测其中的单词和句子。然后,系统会选出具有**高置信度等级的预测。**有时语言模型可以优先考虑某些因其他因素而被认为更有可能的预测。因此,如果通过ASR系统运行短语。声音从本质是一种波,也就是声波,这种波可以作为一种信号来进行处理。
在我们的生活中,语言是传递信息重要的方式,它能够让人们之间互相了解。人和机器之间的交互也是相同的道理,让机器人知道人类要做什么、怎么做。交互的方式有动作、文本或语音等等,其中语音交互越来越被重视,因为随着互联网上智能硬件的普及,产生了各种互联网的入口方式,而语音是简单、直接的交互方式,是通用的输入模式。在1952年,贝尔研究所研制了世界上能识别10个英文数字发音的系统。1960年英国的Denes等人研制了世界上语音识别(ASR)系统。大规模的语音识别研究始于70年代,并在单个词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向更通用的大词汇量、非特定人的连续语音识别。90年代以来,语音识别的研究一直没有太大进步。但是,在语音识别技术的应用及产品化方面取得了较大的进展。自2009年以来,得益于深度学习研究的突破以及大量语音数据的积累,语音识别技术得到了突飞猛进的发展。深度学习研究使用预训练的多层神经网络,提高了声学模型的准确率。微软的研究人员率先取得了突破性进展,他们使用深层神经网络模型后,语音识别错误率降低了三分之一,成为近20年来语音识别技术方面快的进步。另外,随着手机等移动终端的普及。语音识别模块被广泛应用在AI人工智能产品、智能家居遥控、智能玩具等多种领域上。浙江汽车语音识别
而这也是语音识别技术当前发展比较火热的原因。深圳无限语音识别标准
没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时,行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。深圳无限语音识别标准