干气密封技术历经四代革新,凭借非接触式气体润滑成为离心压缩机主流选择。其主要在于动压螺旋槽设计,通过泵送效应形成稳定气膜,但需警惕污染、操作不当及设计缺陷导致的失效风险。干气密封的发展与原理:离心式压缩机,这一在气体输送和加压方面发挥着关键作用的高速旋转透平设备,其轴端密封技术已经历了数代的革新。从早期的迷宫密封、浮环密封,再到后来的油膜机械密封,如今已迈入了全新的第四代——气体润滑端面密封,也就是我们常说的 干气密封。这一技术以其非接触式的气体润滑特点,成为了当前的主流选择。采用先进材料制造的干气密封,可以在更恶劣的环境中保持良好的性能表现。四川储罐干气密封

干气密封的失效原因分析:失效原因分类:干气密封端面槽型的发展已经衍生出多种类型,但主要可归为两大类:单向槽和双向槽,如图2所示。单向槽的设计对密封环的旋转方向有着明确的要求,不支持反转,其运行过程中气膜表现稳定,刚度适中;而双向槽则对旋转方向无特别要求,支持反转。然而,在相同条件下,双向旋转密封端面所形成的气膜反力和气膜刚度相对较小,抗干扰能力也较弱。因此,在变工况运行时,这种设计容易引发气膜的不稳定甚至破裂,进而可能导致介质泄漏和端面的磨损。江西泵用干气密封价位干气密封在氨气压缩机中,防介质泄漏污染,符合环保排放标准。

由于密封腔与工艺气腔有压差,对于串联式结构来讲大部分经除湿、过滤的密封气流经工艺气拉别令密封进入压缩机,只有一小部分密封气流经密封面之间,成为泄漏气体;对于并联式双端面密封来讲,密封气流经两个密封面之间,成为泄漏气体。串联式结构主密封气又分一级主密封气(内侧端面)、二级主密封气(外侧端面),内侧端面起主要密封作用,外侧端面是个安全密封,当内侧主密封突然失效时,危险介质不会发生大量外泄,造成安全事故。一级主密封气使用工艺介质或氮气,二级主密封气只能使用惰性气体(氮气)。
由于密封液和介质均属易汽化物质,并且介质中含有很多杂质,对普通机械密封容易产生负面影响,根据该泵的工艺参数以及实际工况的特点,提出以下两点改造方案:(1)为克服介质易挥发造成机械密封端面干摩擦,主体密封采用干气密封,密封型式选择TM11A型干气密封,从而不受介质汽化的影响,同时通过主密封气体的过滤控制,使得干气密封的端面接触的是干净气体。(2)为使介质的杂质不影响干气密封的正常工作,采用了前置缓冲液进行冲洗,为使结构简单,直接利用泵出口过滤后的干净介质作为缓冲液,同时在泵介质与密封缓冲液之间增加一道螺旋密封,以阻隔杂质不进入缓冲液,保护干气密封正常工作。干气密封的技术成熟,在大型石化装置中应用案例丰富。

机械密封的结构呈现出多样化,但其中一种常见的结构如上图所示。该机械密封装置被安装在旋转轴上,其内部结构包括紧定螺钉、弹簧座、弹簧以及动环辅助密封圈和动环,这些部件随轴一同旋转。而静环、静环辅助密封圈和防转销则被安装在端盖内,端盖与密封腔体通过螺栓相连结。轴通过紧定螺钉、弹簧座和弹簧的协同作用,带动动环进行旋转。由于防转销的作用,静环则保持静止状态,位于端盖之内。在弹簧力和介质的作用下,动环紧密贴合静环的端面,并产生相对滑动,从而有效阻止了介质通过端面间的径向泄露(即泄漏点1),实现了机械密封的主功能。干气密封在丙烷压缩机中,耐低温性能好,密封效果不受温度影响。江西泵用干气密封价位
干气密封的气膜形成速度快,在紧急启动的设备中快速起效。四川储罐干气密封
改造方案:密封结构:采用双端面干气密封进行改造,气源为氮气。由于液环真空泵本身的输送介质为氮气,因此允许干气密封气源氮气在发生轻微泄漏情况下进入液环真空泵。干气密封本体采用集装式结构,可看作由两套单端面密封背靠背布置,为节省轴向空间,内侧密封与外侧密封共用一个动环兼弹簧座;静环采用进口碳石墨,与弹簧相连作为轴向补偿环;动环为硬质合金,螺旋槽刻于动环上。整套干气密封的旋转组件与静止组件集成一体,保证现场安装方便,定位准确。四川储罐干气密封
随着转子的旋转,气体被逐渐泵送至螺旋槽的深处,而螺旋槽外部的无槽区域则形成了所谓的密封坝。这一密封坝对气体流动产生阻碍,进而提升了气体膜的压力。在密封坝的内侧,又设置了一系列反向螺旋槽,它们的作用是进行反向泵送,并优化配合表面的压力分布,从而增强而开启静环与动环组件之间气隙的能力。在这些反向螺旋槽的内部,同样存在一段密封坝,同样对气体流动产生阻力,进一步增加气体膜的压力。通过这种巧妙的设计,配合表面间的压力使得静环表面与动环组件之间保持一个微小的间隙,通常约为3微米。当气体压力与弹簧力共同产生的闭合压力与气体膜的开启压力达到平衡时,便形成了稳定的间隙。随着环保法规日益严格,干气密封成为各类工业...