外泌体分离方法之尺寸排阻色谱分离法:尺寸排阻色谱(SEC)用于根据尺寸而非分子量分离大分子。该技术应用了一种填充有多孔聚合物珠子的柱子,该珠子含有多个孔和隧道。分子根据它们的直径穿过珠子。小半径分子通过色谱柱的孔迁移需要更长的时间,而大分子从色谱柱中洗脱得较早。尺寸排阻色谱可以精确分离大分子和小分子。此外,该方法可以应用不同的洗脱溶液。与离心机离心方法相比,色谱分离具有较多的优势,因为通过色谱分离的外泌体不受剪切力的影响,避免了因剪切力所造成的囊泡结构改变。目前,SEC是一种普遍接受的分离血液和尿液中存在的外泌体的技术。此外,SEC方法与超滤相结合已用于分离和分析尿源性外泌体。此外,流场-流分馏结合紫外分析仪和光散射检测器已被应用于分析外泌体的大小和纯度。流场-流分馏结合抛物线和交叉流来分离外泌体。获得的外泌体已通过电子显微镜和质谱检测。外泌体可通过特定的组装和功能修饰,提高其对宿主细胞的选择性靶向性。东莞细胞外泌体分离稳定性好
外泌体的表征方法之微流体分析技术:微流体技术在外泌体研究方面也起着推动作用。微流体技术不只提供了高质量、高特异性的数据,并且试剂消耗量低,通量高.基于微流体技术的研究方法需要结合使用微流控芯片,微流控芯片通常由玻璃基和聚二甲基硅氧烷(PDMS)膜制成,包含许多尺寸适合所分析样品的微通道。主要区别在于芯片的内表面,可以通过多种方式对其进行功能化,例如通过涂层、多层沉积、电沉积和蚀刻.目前研究中针对不同的微流控表征方法,也制造了不同类型的微芯片,包括免疫芯片、磁性芯片和电化学芯片。外泌体及其蛋白质也可以通过比色法(标记抗体/ELISA)、直接荧光染色(DiO染料)、电化学性质变化和光学特别方法进行检测。对于结果评估,还需要额外的设备,例如读板器或荧光显微镜等。东莞细胞外泌体分离稳定性好外泌体富集、分离和检测是当前外泌体研究的热点之一。
外泌体分离方法之筛分分离法:该技术是通过膜从生物液体中筛分外泌体并通过压力或电泳进行过滤来分离外泌体。筛分分离法的分离时间较短,但分离的外泌体纯度却处于较高的水平。筛分分离法的缺点在于分离的外泌体回收率较低。总之,细胞外泌体提取、外泌体分离在疙瘩等研究领域发挥着重要作用。细胞外泌体分离方法目前多数还是采用高速离心机进行离心分离的技术方法,然而,其他几种分离技术,如过滤法、免疫分离法和筛分法,虽然也能进行外泌体分离,但每种方法都有其局限性,多数还是只应用于实验室、科学研究等领域。
外泌体分离方法之沉淀分离方法::基于聚合物的沉淀分离方法是利用超亲水聚合物来增强小尺寸颗粒(如外泌体)的沉淀。聚乙二醇的常用浓度在8%到15%之间变化。使用这种方法,将含有外泌体的溶液与聚合物一起孵育过夜,并在约10,000×g下进一步离心。外泌体分离方法之FFF分离法:FFF目前是一种很少使用但前景不错的一种外泌体分离方法。分离由横流力驱动,并基于颗粒的分子量或流体动力学直径。它包括高纯度、高效率和短时间处理,但迄今为止,FFF在外泌体分离中的使用案例较少,还有待进一步开发。外泌体在疙瘩微环境中的参与,反映了其具有的高度的异质性和复杂性。
外泌体分离方法之密度梯度离心法:这种方法将超速离心机的超速离心与蔗糖密度梯度相结合。具体地说,密度梯度离心用于将外泌体与非囊泡颗粒(例如蛋白质和蛋白质/RNA聚集体)分离。因此,该方法将囊泡与不同密度的颗粒分离。足够的离心时间比较重要,否则如果外泌体部分具有相似的密度,则仍可能在外泌体部分中发现污染颗粒。该结构不会让大于1μm的细胞和其他颗粒进入布线区域。一些较小的颗粒和细胞碎片可以进入微柱区域,但被纳米纤毛排除,形成直径为30-200nm的孔。纤毛结构选择性地捕获外泌体和小细胞外囊泡。外泌体可以作为一种新型的药物输送系统,利用其高度选择性的靶向性,有效地提高药物的生物利用度。北京血液外泌体分离生产商
外泌体不是干细胞,是干细胞较精华的部分。东莞细胞外泌体分离稳定性好
外泌体分离方法优缺点对比:差速离心法:差速离心法仍是实验中常用的外泌体分离技术。主要步骤如下:1.使用离心机低速离心来去除细胞与细胞碎片。2.而后增加转速通过离心来消除样本中较大的细胞囊泡。3.再使用高速离心机进行高速离心,通过离心沉淀的方式提取外泌体。在这里,需要注意的是生物流体的粘度与分离的外泌体的纯度有较强的相关性。所以,对于高粘度的生物样品需要超速离心机进行较长时间的离心操作。外泌体分离方法之免疫分离法:免疫芯片方法基于表面外泌体受体,用于根据来源分离外泌体。获得的外泌体可直接分析或用于DNA或总RNA分离。外泌体胞内蛋白可用作分离外泌体的特异性标志物。此外,基于ELISA的ExoTEST也可以用于有效分离外泌体。其原理是:使用涂有外泌体抗体的ExoTEST板,可以从各种生物体液中分离出外泌体。该方法适用于常见和细胞类型特异性外泌体蛋白的检测、分析和定量。东莞细胞外泌体分离稳定性好