机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。可分为:前置后驱—FR:即发动机前置、后轮驱动。这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。后置后驱—RR:即发动机后置、后轮驱动。在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。传动系统能实现动力的接通与切断、起步、变速、倒车等功能。40吨地下运矿车传动系统

电驱传动系统的常见故障:离合器打滑:现象:汽车在起步时,离合器踏板抬得很高才能勉强起步;行驶中发动机加速时,车速却不能随之提高。这些都属离合器打滑现象。原因及处理:液压操纵式离合器打滑,多数是因为离合器踏板自由行程不够,从而造成分离轴承压在分离杠杆或膜片上而随之转动。可调节离合器踏板的返回位置,并调整总泵推杆长度,将推杆调长并与活塞顶住,再将推杆倒转半圈,使用权总泵推杆与活塞之间留有间隙。然后再调整分泵调节杆长度,使其伸长,感到分离轴承与分离杠杆或膜片顶住以后,再把调整螺钉调回到二者间隙为2mm左右。对于机械操纵式离合器,离合器踏板自由行程不够,可调整踏板拉杆的工作长度,使分离轴承与分离杠杆或膜片之间的间隙达到规定的数值。8立方 地下铲运车传动系统规格地铁调车电驱传动系统通过主回路开关转换不同模式的切换。

液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2~6。变矩系数随输出转速的上升而下降。液力变矩器的输入轴与输出轴间靠液体联系,工作构件间没有刚性联接。液力变矩器的特点是:能消除冲击和振动,过载保护性能和起动性能好;输出轴的转速可大于或小于输入轴的转速,两轴的转速差随传递扭矩的大小而不同;有良好的自动变速性能,载荷增大时输出转速自动下降,反之自动上升;保证动力机有稳定的工作区,载荷的瞬态变化基本不会反映到动力机上。
地铁调车电驱传动系统的优势:地铁调车电驱传动系统通过主回路开关转换不同模式的切换,可根据对地铁调车当前运行环境实际情况的判断,实现两种电源的切换,操作简单快捷,使用方便灵活。从而使地铁调车的电传动系统具有操作灵活,转换快捷的优点。地铁调车电驱传动系统采用先进的交流调速技术,牵引电机免维护,电气线路接触器少,可靠性高﹔电传动系统过载力强,调速精度高,可实现恒转矩启动、恒功运行。从而使地铁调车的具有牵引系统可靠性高、动态性好的优点。地铁调车传动系统采用地铁供电网和动力蓄电池两种电源。

传动系统是将发动机的动力传递到车轮上的装置,它能实现动力的接通与切断、起步、变速、倒车等功能。它由离合器、变速器、传动轴以及安装在驱动桥中的主减速器、差速器和半轴等组成。发动机与驱动轮设置在不同的位置,两者相隔较远,因此必须布置传动系统。根据动力传递路径的不同,汽车分为两轮驱动和四轮驱劝两种驱动形式。而两轮驱动又分为前轮驱动和后轮驱动两种。离合器位于发动机和手动变速器之间的离合器壳内。离合器总成固定在飞轮的后平面上。在汽车行驶过程中,驾驶人可根据需要踩下或松开离合器踏板,使发动机与变速器暂时分离或逐渐接合,以切断或传递发动机向变速器输入的动力。从广义上讲,电驱传动控制的目的就是要使生产设备、生产线、车间乃至整个工广都实现自动化。8立方 地下铲运车传动系统规格
电驱传动系统的功率大、起动快、运行速度高、过载能力强、可以多拉快跑。40吨地下运矿车传动系统
电驱传动系统:机车上使用柴油内燃机产生动力,动力经发电机转化成电力,再由电动机驱动车轮。液力传动系统:叶轮将动力机(内燃机、电动机、涡轮机等)输入的转速、力矩加以转换,经输出轴带动机器的工作部分。液体与装在输入轴、输出轴、壳体上的各叶轮相互作用,产生动量矩的变化,从而达到传递能量的目的。液力传动与靠液体压力能来传递能量的液压传动在原理、结构和性能上都有很大差别。液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接接触,是一种非刚性传动。液力传动的优点是:能吸收冲击和振动,过载保护性好,甚至在输出轴卡住时动力机仍能运转而不受损伤,带载荷起动容易,能实现自动变速和无级调速等。因此它能提高整个传动装置的动力性能。40吨地下运矿车传动系统