膜厚仪基本参数
  • 品牌
  • 创视智能-TronSight
  • 型号
  • TS-IT50
  • 用途类型
  • 薄膜测厚
  • 工作原理
  • 白光干涉型
  • 输出信号
  • 模拟型
  • 材质
  • 金属膜
  • 位移特征
  • 点位移
  • 测量范围
  • 小位移
膜厚仪企业商机

白光干涉在零光程差处,出现零级干涉条纹,随着光程差的增加,光源谱宽范围内的每条谱线各自形成的干涉条纹之间互有偏移,叠加的整体效果使条纹对比度下降。测量精度高,可以实现测量,采用白光干涉原理的测量系统的抗干扰能力强,动态范围大,具有快速检测和结构紧凑等优点。普通的激光干涉与白光干涉之间虽然有差别,但也有许多相似之处。可以说,白光干涉实际上就是将白光看作一系列理想的单色光在时域上的相干叠加,在频域上观察到的就是不同波长对应的干涉光强变化曲线。白光干涉膜厚仪是一种用来测量透明和平行表面薄膜厚度的仪器。微米级膜厚仪制作厂家

微米级膜厚仪制作厂家,膜厚仪

对同一靶丸的相同位置进行白光垂直扫描干涉实验,如图4-3所示。通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上移动,测量光线穿过靶丸后反射到参考镜与到达基底后直接反射回参考镜的光线之间的光程差。显然,越偏离靶丸中心的光线测得的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度。只有当垂直穿过靶丸中心的光线测得的光程差才对应于靶丸的上、下壳层的厚度。因此,在进行白光垂直扫描干涉实验时,需要选择穿过靶丸中心的光线位置进行测量,这样才能准确地测量靶丸壳层的厚度。此外,通过控制干涉物镜在垂直方向上移动,可以测量出不同位置的厚度值,从而得到靶丸壳层厚度的空间分布情况。微米级膜厚仪制作厂家白光干涉膜厚仪广泛应用于半导体、光学、电子、化学等领域,为研究和开发提供了有力的手段。

微米级膜厚仪制作厂家,膜厚仪

白光干涉时域解调方案需要借助机械扫描部件带动干涉仪的反射镜移动,补偿光程差,实现对信号的解调。光纤白光干涉仪的两输出臂分别作为参考臂和测量臂,作用是将待测的物理量转换为干涉仪两臂的光程差变化。测量臂因待测物理量而增加了一个未知的光程,参考臂则通过移动反射镜来实现对测量臂引入的光程差的补偿。当干涉仪两臂光程差ΔL=0时,即两干涉光束为等光程的时候,出现干涉极大值,可以观察到中心零级干涉条纹,而这一现象与外界的干扰因素无关,因而可据此得到待测物理量的值。干扰输出信号强度的因素包括:入射光功率、光纤的传输损耗、各端面的反射等。外界环境的扰动会影响输出信号的强度,但是对零级干涉条纹的位置不会产生影响。

白光干涉的相干原理早在1975年就已经被提出,随后于1976年在光纤通信领域中获得了实现。1983年,BrianCulshaw的研究小组报道了白光干涉技术在光纤传感领域中的应用。随后在1984年,报道了基于白光干涉原理的完整的位移传感系统。该研究成果证明了白光干涉技术可以被用于测量能够转换成位移的物理参量。此后的几年间,白光干涉应用于温度、压力等的研究相继被报道。自上世纪九十年代以来,白光干涉技术快速发展,提供了实现测量的更多的解决方案。近几年以来,由于传感器设计与研制的进步,信号处理新方案的提出,以及传感器的多路复用等技术的发展,使得白光干涉测量技术的发展更加迅速。标准样品的选择和使用对于保持仪器准确度至关重要。

微米级膜厚仪制作厂家,膜厚仪

干涉测量法是一种基于光的干涉原理实现对薄膜厚度测量的光学方法,是一种高精度的测量技术,其采用光学干涉原理的测量系统具有结构简单、成本低廉、稳定性高、抗干扰能力强、使用范围广等优点。对于大多数干涉测量任务,都是通过分析薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究待测物理量引入的光程差或位相差的变化,从而实现测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,利用外差干涉进行测量,其精度甚至可以达到10^-3 nm量级。根据所使用的光源不同,干涉测量方法可分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但不能实现对静态信号的测量,只能测量输出信号的变化量或连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度测量中得到了广泛的应用。总的来说,白光干涉膜厚仪是一种应用很广的测量薄膜厚度的仪器。测量膜厚仪找哪里

工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。微米级膜厚仪制作厂家

薄膜干涉原理根据薄膜干涉原理…,当波长为^的单色光以人射角f从折射率为n.的介质入射到折射率为n:、厚度为e的介质膜面(见图1)时,干涉明、暗纹条件为:

2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)

2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4...(2)

E式中k为干涉条纹级次;δ’为半波损失.

普通物理教材中讨论薄膜干涉问题时,均近似地认为,δ’是指入射光波在光疏介质中前进,遇到光密介质i的界面时,在不超过临界角的条件下,不论人射角的大小如何,在反射过程中都将产生半个波长的损失(严格地说, 只在掠射和正射情况下反射光的振动方向与入射光的振动方向才几乎相反),故δ’是否存在决定于n1,n2,n3大小的比较。当膜厚e一定,而入射角j可变时,干涉条纹级次^随f而变,即同样的人射角‘对应同一级明纹(或暗纹),叫等倾干涉,如以不同的入射角入射到平板介质上.当入射角£一定,而膜厚。可变时,干涉条纹级次随。而变,即同样的膜厚e对应同一级明纹(或暗纹)。叫等厚干涉,如劈尖干涉和牛顿环. 微米级膜厚仪制作厂家

与膜厚仪相关的**
信息来源于互联网 本站不为信息真实性负责