热门标签
  • 光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    材料技术的发展深深促进了3D打印技术的发展。陶瓷材料是一种传统的无机材料,精美实用,已经有几千年的历史。硬而脆的特点使陶瓷材料加工成形尤其困难,传统陶瓷制作工艺只能制造简单三维形状的产品,而且成本高、周期长。陶瓷3D打印技术的发展使复杂陶瓷产品制作成为可能,3D打印技术所具有的操作简单、速度快、精度高等优点给陶瓷注入了新的活力。起初,3D打印技术在陶瓷领域的应用主要是模型的制作,利用3D打印的模具再翻模成型,制成精美的陶瓷产品。但随后,3D打印逐渐能够完成真实陶瓷产品的制作。近些年,国内外很多公司或科研团体在从事传统陶瓷的3D打印技术研究,取得了众多突破性进展。奥地利的Lithoz公司开发了基...

    发布时间:2023.02.02
  • 宜兴生物医疗陶瓷3D打印硬度怎么样

    宜兴生物医疗陶瓷3D打印硬度怎么样

    陶瓷3D打印如何解决这些拦路虎呢?陶瓷具备***的耐热性和机械性能,陶瓷3D打印具备生产高质量的精细部件的能力。因此,增材制造可以在降低成本和交付周期的同时实现复杂形状的设计,而这在传统制造中是无法实现的。因此,陶瓷3D打印对于像航空航天这种要求苛刻的行业来说是一个非常理想的解决方向。Lithoz通过开发一种氮化硅(Si3N4)迅速将自己定位在这一市场上,氮化硅具备比较好性能:即使在高温下也具有极高的强度、出色的耐温变能力,以及极高的硬度。为了证明这些性能,奥地利Lithoz公司用Si3N4制成的喷嘴在极端条件下进行了测试,结果非常好。陶瓷3D打印的大概费用大概是多少?宜兴生物医疗陶瓷3D打印...

    发布时间:2023.02.02
  • 张家港光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    张家港光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    据预测,在未来几年全球陶瓷3D打印市场规模可以达到48亿美元,其中航空航天业将是主要应用领域。由于在太空中运行环境比较严苛,航天设备既要能承受发射时的高温,也要承受太空中的低温,因此对零件的要求非常高,这就将传统的制造工艺推向了极限。随着陶瓷3D打印技术的出现,使用该技术来制造陶瓷基复合材料,此类材料相对于超级合金具有明显的性能优势,而且密度要低很多。同时通过3D打印可以实现一些传统制造工艺无法实现的结构,制造出性能好,重量更轻的零件。哪家的陶瓷3D打印成本价比较低?张家港光固化陶瓷3D打印氧化镁氧化锆氧化铝等陶瓷材料具有优异的热学性能和力学性能,在众多领域显示出重要的应用前景。其固有的**度...

    发布时间:2022.12.30
  • 成型时间多少陶瓷3D打印加工周期短

    成型时间多少陶瓷3D打印加工周期短

    激光选区烧结/熔融技术主要应用在金属、复合材料的3D打印,由于陶瓷材料的熔点比较高,激光难以直接对陶瓷粉末进行烧结或者熔化,故研究重点放在了激光选区烧结上。SLS原理与三维印刷技术较类似,将粘接剂换为激光束。将难熔的陶瓷粉末外表面包裹上高分子粘接剂,激光按照计算机设计的路径逐点扫描粉体表面,扫描的部位局部受到高温,颗粒在相互之间的粘接剂作用下产生很好的粘接。当一层扫描结束后,辊子铺平新的一层粉料,经激光扫描后形成新的粘接层,周期性过程完成三维部件的成型,如图10。图11为我国学者利用自研SLS设备打印出的陶瓷件。优点:无需支撑即可制备复杂陶瓷零件;缺点:因受到粘接剂铺设密度的限制导致陶瓷制品致...

    发布时间:2022.12.30
  • 扬中三维印刷陶瓷3D打印硬度怎么样

    扬中三维印刷陶瓷3D打印硬度怎么样

    材料技术的发展深深促进了3D打印技术的发展。陶瓷材料是一种传统的无机材料,精美实用,已经有几千年的历史。硬而脆的特点使陶瓷材料加工成形尤其困难,传统陶瓷制作工艺只能制造简单三维形状的产品,而且成本高、周期长。陶瓷3D打印技术的发展使复杂陶瓷产品制作成为可能,3D打印技术所具有的操作简单、速度快、精度高等优点给陶瓷注入了新的活力。起初,3D打印技术在陶瓷领域的应用主要是模型的制作,利用3D打印的模具再翻模成型,制成精美的陶瓷产品。但随后,3D打印逐渐能够完成真实陶瓷产品的制作。近些年,国内外很多公司或科研团体在从事传统陶瓷的3D打印技术研究,取得了众多突破性进展。奥地利的Lithoz公司开发了基...

    发布时间:2022.12.30
  • 扬中义齿陶瓷3D打印氧化镁氧化锆氧化铝等

    扬中义齿陶瓷3D打印氧化镁氧化锆氧化铝等

    光固化快速成型技术,又称为立体印刷成型技术。陶瓷的光固化快速成型技术主要采用特定波长的光(主要为紫外光,现也有用可见光),照射能够迅速固化的光敏液态树脂与陶瓷粉末混合均匀的浆料,通过控制光的路径选择性地辐照某一层液体,**终成型出部分区域固化的零部件,如图12。光固化成型的陶瓷毛坯件还需热处理、烧结等工艺来增强坯体的致密度以及机械强度,故如何配制出适应特定波长、高固含量、低粘度的均匀的陶瓷浆料成为此技术的关键。优点:(1)成型精度极高,可制备复杂几何形状的零件,如图13;(2)得到的陶瓷件烧结后致密度高,性能优异;缺点:(1)需设置支撑结构,后处理麻烦,同时需考虑二次固化问题;(2)折射率较高...

    发布时间:2022.12.29
  • 海陵区技术步骤陶瓷3D打印陶瓷加工定制

    海陵区技术步骤陶瓷3D打印陶瓷加工定制

    激光选区烧结/熔融技术主要应用在金属、复合材料的3D打印,由于陶瓷材料的熔点比较高,激光难以直接对陶瓷粉末进行烧结或者熔化,故研究重点放在了激光选区烧结上。SLS原理与三维印刷技术较类似,将粘接剂换为激光束。将难熔的陶瓷粉末外表面包裹上高分子粘接剂,激光按照计算机设计的路径逐点扫描粉体表面,扫描的部位局部受到高温,颗粒在相互之间的粘接剂作用下产生很好的粘接。当一层扫描结束后,辊子铺平新的一层粉料,经激光扫描后形成新的粘接层,周期性过程完成三维部件的成型,如图10。图11为我国学者利用自研SLS设备打印出的陶瓷件。优点:无需支撑即可制备复杂陶瓷零件;缺点:因受到粘接剂铺设密度的限制导致陶瓷制品致...

    发布时间:2022.12.29
  • 工业园区氧化锆陶瓷陶瓷3D打印陶瓷加工定制

    工业园区氧化锆陶瓷陶瓷3D打印陶瓷加工定制

    据预测,在未来几年全球陶瓷3D打印市场规模可以达到48亿美元,其中航空航天业将是主要应用领域。由于在太空中运行环境比较严苛,航天设备既要能承受发射时的高温,也要承受太空中的低温,因此对零件的要求非常高,这就将传统的制造工艺推向了极限。随着陶瓷3D打印技术的出现,使用该技术来制造陶瓷基复合材料,此类材料相对于超级合金具有明显的性能优势,而且密度要低很多。同时通过3D打印可以实现一些传统制造工艺无法实现的结构,制造出性能好,重量更轻的零件。苏州口碑好的陶瓷3D打印公司。工业园区氧化锆陶瓷陶瓷3D打印陶瓷加工定制光固化快速成型技术,又称为立体印刷成型技术。陶瓷的光固化快速成型技术主要采用特定波长的光...

    发布时间:2022.12.29
  • 工业园区光固化陶瓷3D打印适用范围怎样

    工业园区光固化陶瓷3D打印适用范围怎样

    热解得到陶瓷的成分、显微组织和产量受陶瓷先驱体的结构与成分的影响。目前,陶瓷先驱体主要应用于合成陶瓷纤维和致密陶瓷的合成。应用较成熟的陶瓷先驱体为聚碳硅烷(Polycarbosilane,PCS)、聚硅氮烷(Polysilazane,PSZ)、聚硅氧烷(Polysiloxane,PSO)、聚硅烷(polysilane)。PCS陶瓷先驱体是抗氧化性能较好的碳化物,具有良好的力学性能、稳定的化学性能及抗震性能等优点,主要应用于制备陶瓷纤维和陶瓷涂层。史毅敏等运用SiC陶瓷特殊的电性能和极好的吸波性通过聚碳硅烷经氧化交联固化、热解制备SiC陶瓷吸波材料,通过改变交联温度和热解温度确定制备吸波性较高的...

    发布时间:2022.12.29
  • 海陵区生产厂家陶瓷3D打印适用范围怎样

    海陵区生产厂家陶瓷3D打印适用范围怎样

    为满足新一代复杂零部件的先进制造需求,产品的轻量化以及节能高效的先进制造工艺越来越受到青睐,新型制造技术不断涌现,这些新加工方法在弥补和克服传统加工工艺不足的同时为陶瓷零件的制造提供了新的思路。增材制造技术是20世纪80年代出现的一种新型“增量”快速制造技术,将三维模型降为系列二维平面,利用离散材料逐层堆积,自下而上“生长”成具有任意复杂结构的三维产品。该技术可在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计数据,快速制造出新产品,从而极大缩短新产品研发周期、降低开发成本,对企业快速响应市场、提升市场竞争力具有重要价值。选择性激光烧结(SLS)和选择性激光熔融(SLM)技术是增材制...

    发布时间:2022.12.29
  • 宜兴生产厂家陶瓷3D打印氧化镁氧化锆氧化铝等

    宜兴生产厂家陶瓷3D打印氧化镁氧化锆氧化铝等

    所有陶瓷零件,无论是传统加工还是3D打印的,都具有微小的缺陷。当应力施加到该区域时,缺陷会变成不受控制的裂纹,从而导致整个零件发生灾难性破坏。因此,对于当前主流的陶瓷3D打印工艺,研究者所需要考虑的关键因素则在于,陶瓷的低固有韧性会在其加工过程中引入缺陷(如气孔、未熔合、层间结合和表面粗糙度),这些缺陷都可能会在结构上损害**终的陶瓷组件。一种增韧解决方案,使3D打印的陶瓷厚度和韧性分别提升3倍 ——而将增强材料添加到陶瓷基体中是创建耐缺陷零件的常用方法。 如何正确使用陶瓷3D打印的。宜兴生产厂家陶瓷3D打印氧化镁氧化锆氧化铝等通过增材制造的方法来制作,不仅可以防止高成本和巨大的工作...

    发布时间:2022.12.29
  • 如皋先进陶瓷3D打印硬度怎么样

    如皋先进陶瓷3D打印硬度怎么样

    SiC陶瓷又称金刚砂,具有高的抗弯强度、优良的抗氧化性与耐腐蚀性、高的抗磨损以及低的摩擦因数等高温力学性能。SiC陶瓷在已知陶瓷材料中具有比较好的高温力学性能(强度、抗蠕变性等),其抗氧化性在所有非氧化物陶瓷中也是比较好的。Polzin等以Solupor-Binder聚合物作为液体结合剂,将粒径小于50μm的SiC细粉用来制备陶瓷粉料,采用直接喷墨打印成型。在Ar气氛保护下,2200℃保温3h可制备气孔率55%,抗弯强度9.74MPa,抗压强度19.65MPa的碳化硅多孔陶瓷。哪家公司的陶瓷3D打印的有售后?如皋先进陶瓷3D打印硬度怎么样月球一直以来被认为对人类来说是可用且无毒安全的,利用月球...

    发布时间:2022.12.29
  • 启东陶瓷种类陶瓷3D打印氧化镁氧化锆氧化铝等

    启东陶瓷种类陶瓷3D打印氧化镁氧化锆氧化铝等

    目前陶瓷3D打印技术发展还不够成熟,还有许多问题亟待解决:1、材料:选择合适颗粒大小、粒径分布集中的陶瓷粉末,配置高固含量陶瓷浆料、低粘度、流动性好的温度均匀的陶瓷浆料/墨水/悬浮液是陶瓷3D打印材料的主要问题,也是制约高精度陶瓷3D打印的主要原因之一;2、成型精度与尺寸的统一:目前SLA可以成型精度较高的陶瓷件,但受到光源等因素限制了其成型尺寸;3DP、LOM、FDC等技术虽可成型大尺寸陶瓷件,但精度较差。需要开发出成型精度更高、控制方式更加灵活、成型尺寸更大的陶瓷3D打印技术与设备;3、烧结:SLA等技术成型的陶瓷件需要经过烧结才能获得致密度高、机械性能良好的陶瓷件,但逐层成型导致成型件的...

    发布时间:2022.12.29
  • 海陵区航空航天陶瓷3D打印加工周期短

    海陵区航空航天陶瓷3D打印加工周期短

    太空船搭载3D打印陶瓷部件起飞更快、更简单、更具成本效益是航空航天领域行业追求的原则。几乎没有任何其他行业像航空航天这样,对额外制造的零件的要求和期望如此之高。其部件面临的比较大挑战可能不仅包括极端负载,还包括加热和过热。特别是,涡轮叶片的移动速度使其产生的热量高于金属涡轮叶片的熔点,这一事实将传统制造工艺推向了极限。然而,单个部件不仅必须能够承受过热而不会出现问题,还必须能够承受严寒。如果有人认为太空中的外部温度会迅速下降到–200°C以上,那么很快就会清楚:航空航天部门需要一种前瞻性的制造工艺替代方案。零件的性能决不能在任何极端条件下受到影响,稳定性和孔隙率在太空旅行中至关重要。推进器的尺...

    发布时间:2022.12.28
  • 宜兴氧化铝陶瓷陶瓷3D打印周期

    宜兴氧化铝陶瓷陶瓷3D打印周期

    飞机能够起飞,涡轮至关重要。涡轮内部**重要的零件之一是涡轮叶片,传统上是通过熔模铸造制造的。然而,这里有一个严重的问题:对于传统的注塑型芯,合并多叶片、复杂和狭窄的结构是有极限的。从长远来看,使用传统方式生产不仅代价高昂,还会带来安全风险。如何在不增加成本的情况下更高效、更创新地制造涡轮?Lithoz的专有材料LithaCore 450解决了这个问题,这是一种硅基材料,非常适合使用LCM技术生产铸铁芯。极低的热膨胀系数和极高的孔隙率使该材料成为精密陶瓷型芯制造的理想材料,能够生产具有复杂的结构的零件,非常适用于航空航天应用。陶瓷3D打印的的整体大概费用是多少?宜兴氧化铝陶瓷陶瓷3D打印周期陶...

    发布时间:2022.12.28
  • 启东先进陶瓷3D打印易机加工

    启东先进陶瓷3D打印易机加工

    目前陶瓷3D打印技术发展还不够成熟,还有许多问题亟待解决:1、材料:选择合适颗粒大小、粒径分布集中的陶瓷粉末,配置高固含量陶瓷浆料、低粘度、流动性好的温度均匀的陶瓷浆料/墨水/悬浮液是陶瓷3D打印材料的主要问题,也是制约高精度陶瓷3D打印的主要原因之一;2、成型精度与尺寸的统一:目前SLA可以成型精度较高的陶瓷件,但受到光源等因素限制了其成型尺寸;3DP、LOM、FDC等技术虽可成型大尺寸陶瓷件,但精度较差。需要开发出成型精度更高、控制方式更加灵活、成型尺寸更大的陶瓷3D打印技术与设备;3、烧结:SLA等技术成型的陶瓷件需要经过烧结才能获得致密度高、机械性能良好的陶瓷件,但逐层成型导致成型件的...

    发布时间:2022.12.28
  • 如皋义齿陶瓷3D打印硬度怎么样

    如皋义齿陶瓷3D打印硬度怎么样

    适应上述大好形势,多种原理的陶瓷3D打印技术正在迅速兴起,例如,在SLA、DLP、SLS、3DP、FDM基础上改进而成的陶瓷3D打印,其中以SLA和DLP为基础的相当有代表性。然而由于陶瓷材料的特殊性,也为3D打印技术带来了许多特殊困难,主要表现在:(1)高陶瓷含量成形原材料的配制、流动性与稳定性。(2)后处理(脱脂、烧结等)导致的收缩、裂纹、耗时与陶瓷件精度误差。(3)高粘度成形原材料的供料与回收再利用。(4)极薄层材料的铺设与刮平。(5)陶瓷材料中细小硬粒造成运动机构的障碍。(6)3D打印陶瓷材料性能测试,产品国家注册证申报与批准。(7)国外进口陶瓷3D打印机和材料昂贵。陶瓷3D打印多少钱...

    发布时间:2022.12.28
  • 工业园区人造骨陶瓷3D打印耐高温多少

    工业园区人造骨陶瓷3D打印耐高温多少

    虽然目前市面上通用的材料已经通过了多年使用的验证,但Lithoz在陶瓷材料的可选择面上又新增加了两种。首先,硅渗透碳化硅(SiSiC)是一种轻质而坚硬的陶瓷材料,具有非常好的导热性和**小的热膨胀系数。在这方面,SiSiC陶瓷通常用作热交换器、喷嘴或不同类型燃烧器的端件。另一方面,氮化铝(AlN)是利用DLP制造技术开发的,和SiSiC一样,氮化铝具有很高的导热性。另一方面,AlN的弯曲强度(在研究样品期间测量得到)在320至498 MPa之间。总之,这些特性使生产高度复杂且无裂纹的零件成为可能,从而在热管理领域创造了新的应用可能性。苏州哪家公司的陶瓷3D打印的价格比较划算?工业园区人造骨陶瓷...

    发布时间:2022.12.28
  • 如皋先进陶瓷3D打印适用范围怎样

    如皋先进陶瓷3D打印适用范围怎样

    光固化快速成型技术,又称为立体印刷成型技术。陶瓷的光固化快速成型技术主要采用特定波长的光(主要为紫外光,现也有用可见光),照射能够迅速固化的光敏液态树脂与陶瓷粉末混合均匀的浆料,通过控制光的路径选择性地辐照某一层液体,**终成型出部分区域固化的零部件,如图12。光固化成型的陶瓷毛坯件还需热处理、烧结等工艺来增强坯体的致密度以及机械强度,故如何配制出适应特定波长、高固含量、低粘度的均匀的陶瓷浆料成为此技术的关键。优点:(1)成型精度极高,可制备复杂几何形状的零件,如图13;(2)得到的陶瓷件烧结后致密度高,性能优异;缺点:(1)需设置支撑结构,后处理麻烦,同时需考虑二次固化问题;(2)折射率较高...

    发布时间:2022.12.28
  • 如皋陶瓷种类陶瓷3D打印苏州凯发新材

    如皋陶瓷种类陶瓷3D打印苏州凯发新材

    陶瓷3D打印如何解决这些拦路虎呢?陶瓷具备***的耐热性和机械性能,陶瓷3D打印具备生产高质量的精细部件的能力。因此,增材制造可以在降低成本和交付周期的同时实现复杂形状的设计,而这在传统制造中是无法实现的。因此,陶瓷3D打印对于像航空航天这种要求苛刻的行业来说是一个非常理想的解决方向。Lithoz通过开发一种氮化硅(Si3N4)迅速将自己定位在这一市场上,氮化硅具备比较好性能:即使在高温下也具有极高的强度、出色的耐温变能力,以及极高的硬度。为了证明这些性能,奥地利Lithoz公司用Si3N4制成的喷嘴在极端条件下进行了测试,结果非常好。陶瓷3D打印推荐苏州凯发新材料科技有限公司。如皋陶瓷种类陶...

    发布时间:2022.12.28
  • 海陵区原材料陶瓷3D打印周期

    海陵区原材料陶瓷3D打印周期

    与金属和聚合物相比,许多陶瓷的极高熔点对增材制造提出了挑战。由于陶瓷不易铸造或机加工,因此3D打印可实现几何灵活性的巨大飞跃。HRL所开发的陶瓷前树脂体系可以使用目前商业化的立体光刻3D打印机进行成型,且零件在热解过程中具有均匀收缩率,**终陶瓷零件内部几乎没有孔隙。这为创建具有复杂形状的高性能陶瓷部件创造了可能。 陶瓷3D打印也被视为在极限环境下使用的颠覆性创新技术,它可以满足对高温材料(如超高温陶瓷)和复杂几何形状的需求。但是,目前缺乏可低成本和大规模生产的3D打印工艺来进行**度和耐损伤陶瓷的生产。早期采用陶瓷增材制造的一个吸引人的领域是小型无人机的低成本发动机开发,它可以显著...

    发布时间:2022.12.28
  • 氧化锆陶瓷陶瓷3D打印

    氧化锆陶瓷陶瓷3D打印

    3DCERAM源自法国,作为陶瓷增材制造的**者,经过20年的积累,将自身在材料领域的技术经验与3D打印完美的结合在一起,形成了一套快速制备复杂结构陶瓷的独特技术,并且由于光固化技术的***通用性,打印材料的种类可从非金属延申到部分金属材质。基于3DCERAM设备高度开放的软件系统和光固化打印技术***的适用性,目前可打印的材质已不限于常规的氧化物陶瓷、非氧化物陶瓷,山东大学等相关单位开始利用光固化技术制备铁氧体材料、高熵合金、高温合金等,当然也包括在参与的3D打印制备燃料电池项目计划中的陶瓷/金属复合光固化3D打印。哪家的陶瓷3D打印成本价比较低?氧化锆陶瓷陶瓷3D打印生坯的空间结构、内部和...

    发布时间:2022.12.27
  • 人造骨陶瓷3D打印陶瓷加工定制

    人造骨陶瓷3D打印陶瓷加工定制

    三维打印成型技术,采用辊子将陶瓷粉末预先铺平,然后将粘接剂溶液按零件截面形状从喷头中喷出,使粉末粘结在一起形成零件形状,层层叠加直至成型出设计的三维模型,如图5。目前,以氧化锆、锆英砂、氧化铝、碳化硅和氧化硅等陶瓷粉体为原材料,基于三维印刷成型技术制造陶瓷模具的方法已经得到了良好的发展并成功市场化,其中,硅溶胶是**常用的陶瓷颗粒黏结剂。优势:能够大规模成型出陶瓷部件,成本较低;劣势:黏结剂黏合强度受限导致部件强度有限,难以获得机械性能优良的陶瓷器件。陶瓷3D打印的大概费用是多少?人造骨陶瓷3D打印陶瓷加工定制与传统的制造技术相比,3D打印技术的制造速度更快,并可直接制造出任意复杂形状的部件,...

    发布时间:2022.12.27
  • 陶瓷种类陶瓷3D打印硬度怎么样

    陶瓷种类陶瓷3D打印硬度怎么样

    陶瓷3D打印也被视为在极限环境下使用的颠覆性创新技术,它可以满足对高温材料(如超高温陶瓷)和复杂几何形状的需求。但是,目前缺乏可低成本和大规模生产的3D打印工艺来进行**度和耐损伤陶瓷的生产。早期采用陶瓷增材制造的一个吸引人的领域是小型无人机的低成本发动机开发,它可以显著提高发动机的性能。在这些应用中,较高的组件故障风险具有相对不重要的影响,可以视为原型设计和加速迭代的测试平台。 与金属和聚合物相比,许多陶瓷的极高熔点对增材制造提出了挑战。由于陶瓷不易铸造或机加工,因此3D打印可实现几何灵活性的巨大飞跃。HRL所开发的陶瓷前树脂体系可以使用目前商业化的立体光刻3D打印机进行成型,且零...

    发布时间:2022.12.27
  • 启东光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    启东光固化陶瓷3D打印氧化镁氧化锆氧化铝等

    生坯的空间结构、内部和表面缺陷对其热解产物的力学性能有重要影响。高固含量会增加粘度和吸光性,不利于固化。虽然悬浮液具有良好的流变性和稳定性,但其空间固化生长性能才是决定3D打印质量的真正因素。因此,需要从空间固化生长机理研究生坯的空间结构分布和缺陷形成因素。了解生坯的空间固化生长机理和缺陷形成对于精密高性能陶瓷产品的制造具有重要意义。中国科学院沈阳自动化研究所的研究团队结合新颖的数学理论和实验,探讨了不同粉末体积分数和平均粒径对立体光刻中氧化铝生坯空间固化生长机理和缺陷调控的影响。在数学模型中发现了生坯的空间固化生长特征和缺陷形状,得到了光束区、散射区、固化不足区和重叠区的分布规律,以及它们与...

    发布时间:2022.12.27
  • 工业园区人造骨陶瓷3D打印苏州凯发新材

    工业园区人造骨陶瓷3D打印苏州凯发新材

    陶瓷材料具有优异的热学性能和力学性能,在众多领域显示出重要的应用前景。其固有的**度、高硬度等性能却给陶瓷零件的成型带来了很多困难。将增材制造技术引入到陶瓷成型中将能有效克服上述困难,并为陶瓷材料复杂成型工艺提供了全新的可能性。与此同时,3D打印制造的陶瓷制品不仅具有优异的物理性能,如高温抗氧化、耐腐蚀、耐磨,还具有满足使用要求的机械性能,如弯曲强度、断裂韧性、硬度等。然而,陶瓷3D打印大规模、高精度和稳定制造是一个巨大挑战。基于树脂的混合浆料成型已成为当前主流的陶瓷3D打印技术,陶瓷制备过程中树脂完全热解带来的缺陷不容忽视。换言之,生坯形成过程中的空间固化生长机理和缺陷也会对陶瓷性能产生重要...

    发布时间:2022.12.27
  • 光固化陶瓷3D打印适用范围怎样

    光固化陶瓷3D打印适用范围怎样

    陶瓷材料在生物医学领域具有极大的吸引力,它们易于灭菌且具有较高的机械强度和耐磨性,在植入体内后也并不会引发过敏,具有生物惰性和较低的导热性,在CT或磁共振成像(MRI)中更不会产生伪影。3D打印可以实现针对患者的解决方案,包括可吸收和长久性植入物、牙科植入物、牙冠和牙桥、医疗设备部件和手术工具等。骨骼本身可以被认为是高级的陶瓷基复合材料,原则上可以通过3D打印制造。实验表明,这种3D打印的人工骨具有高度的骨再生能力,甚至可以作为液体生物制剂的载体。哪家陶瓷3D打印的是口碑推荐?光固化陶瓷3D打印适用范围怎样适应上述大好形势,多种原理的陶瓷3D打印技术正在迅速兴起,例如,在SLA、DLP、SLS...

    发布时间:2022.12.27
  • 兴化氧化铝陶瓷陶瓷3D打印周期

    兴化氧化铝陶瓷陶瓷3D打印周期

    太空船搭载3D打印陶瓷部件起飞更快、更简单、更具成本效益是航空航天领域行业追求的原则。几乎没有任何其他行业像航空航天这样,对额外制造的零件的要求和期望如此之高。其部件面临的比较大挑战可能不仅包括极端负载,还包括加热和过热。特别是,涡轮叶片的移动速度使其产生的热量高于金属涡轮叶片的熔点,这一事实将传统制造工艺推向了极限。然而,单个部件不仅必须能够承受过热而不会出现问题,还必须能够承受严寒。如果有人认为太空中的外部温度会迅速下降到–200°C以上,那么很快就会清楚:航空航天部门需要一种前瞻性的制造工艺替代方案。零件的性能决不能在任何极端条件下受到影响,稳定性和孔隙率在太空旅行中至关重要。推进器的尺...

    发布时间:2022.12.27
  • 工业园区成型时间多少陶瓷3D打印耐高温多少

    工业园区成型时间多少陶瓷3D打印耐高温多少

    陶瓷先驱体是用化学方法合成的一类聚合物。1976年,Yajima等利用有机高分子先驱体聚碳硅烷裂解制备出SiC陶瓷纤维,开创了先驱体转化制备陶瓷及其复合材料的先河。无机陶瓷可通过陶瓷先驱体即有机聚合物进行高温裂解处理得到。陶瓷先驱体在惰性气体保护的热处理过程中热解成SiC, Si3N4, BN, AlN, SiOC, SiNC等陶瓷基复合材料,并释放挥发性气体。挥发性气体的释放使体积收缩,引起陶瓷产品产生裂纹和孔隙,导致材料致密度降低,此问题可通过合成高陶瓷产率的陶瓷先驱体、加入填料(惰性填料、活性填料)的方法解决。相较于传统的陶瓷粉末加工方式,陶瓷先驱体转化制备陶瓷的过程减少了烧结过程,降低...

    发布时间:2022.12.27
  • 吴中区生物医疗陶瓷3D打印耐高温多少

    吴中区生物医疗陶瓷3D打印耐高温多少

    材料技术的发展深深促进了3D打印技术的发展。陶瓷材料是一种传统的无机材料,精美实用,已经有几千年的历史。硬而脆的特点使陶瓷材料加工成形尤其困难,传统陶瓷制作工艺只能制造简单三维形状的产品,而且成本高、周期长。陶瓷3D打印技术的发展使复杂陶瓷产品制作成为可能,3D打印技术所具有的操作简单、速度快、精度高等优点给陶瓷注入了新的活力。起初,3D打印技术在陶瓷领域的应用主要是模型的制作,利用3D打印的模具再翻模成型,制成精美的陶瓷产品。但随后,3D打印逐渐能够完成真实陶瓷产品的制作。近些年,国内外很多公司或科研团体在从事传统陶瓷的3D打印技术研究,取得了众多突破性进展。奥地利的Lithoz公司开发了基...

    发布时间:2022.12.26
1 2 3 4 5 6 7 8
信息来源于互联网 本站不为信息真实性负责