钛电极是以钛为基体,通过表面改性处理制备而成的电极材料。钛作为一种具有高比强度、良好耐腐蚀性的金属,为电极提供了稳定的机械支撑。在电极制备过程中,通常会在钛基体表面涂覆一层或多层具有电催化活性的物质,如金属氧化物、贵金属等。这些活性涂层能够明显改变电极的电化学性能,使其具备特定的电催化功能,从而在不同的电化学过程中发挥作用。例如,在氯碱工业中,钛电极的使用大幅提高了电解效率和产品质量,推动了行业的发展。钛电极的出现,为众多需要高效、稳定电极材料的领域提供了新的解决方案。

臭氧氧化可高效降解循环水中的难降解有机物,电化学臭氧发生器(EOG)通过质子交换膜电解水产生高浓度臭氧(50-200gO₃/kWh)。以PbO₂阳极为例,臭氧产率比传统电晕法高30%,且无需空气预处理。某印染厂将EOG集成至循环水系统,色度去除率>95%,并减少了污泥产量。循环水中的Cu、Zn等重金属可通过电化学沉积在阴极回收。采用旋转阴极(转速50rpm)和脉冲电流(占空比20%)时,铜回收纯度达99.5%,电流效率>80%。某电镀厂循环水处理案例显示,年回收铜2.5吨,经济效益与环境效益明显。江苏数据中心电极设备铝电极电絮凝处理含油废水,SS去除率>90%。

热分解法是制备钛电极常用的方法之一。该方法首先将含有活性金属元素的有机盐或无机盐溶液涂覆在钛基体表面,然后通过高温热处理使涂层发生分解反应,形成具有电催化活性的金属氧化物涂层。在制备钛基二氧化钌电极时,通常采用四氯化钌的乙醇溶液作为涂液,将其均匀涂覆在经过预处理的钛基体上,然后在一定温度下进行多次热分解,每次热分解温度和时间都有严格要求,通过控制这些参数,可以精确调控涂层的结构和性能。热分解法制备的钛电极具有良好的涂层与基体结合力,且工艺相对简单,适合大规模生产。
含油废水常见于石化、食品加工等行业,其高COD和乳化特性使传统处理方法效率低下。电氧化技术可通过阳极产生的·OH和活性氧物种(如O₂⁻)破坏油滴表面的乳化剂,实现破乳和有机物降解。例如,采用Ti/SnO₂-Sb电极处理乳化油废水时,COD去除率可达80%以上,且油滴粒径从10 μm降至1 μm以下。关键挑战在于电极污染(油膜覆盖导致活性位点失活),需通过脉冲电流或周期性极性反转(PRS技术)缓解。此外,耦合气浮工艺可提升油污分离效率,而低温等离子体辅助电氧化能进一步降低能耗。未来需开发疏油-亲水双功能电极材料以增强抗污性。循环水电化学处理实现节能减排。

PPCPs(如防晒剂)在水体中持续积累,传统工艺难以有效去除。电氧化技术可通过自由基攻击实现PPCPs的分子结构破坏。以磺胺甲恶唑(SMX)为例,BDD电极在10 mA/cm²电流密度下处理2小时,SMX降解率>95%,且毒性评估显示中间产物无生态风险。关键挑战在于PPCPs的低浓度(ng/L~μg/L)和高背景有机物干扰,需通过提高电极选择性(如分子印迹改性)或耦合前置吸附工艺来增强靶向降解。此外,实际水体中碳酸盐等自由基淬灭剂会降低效率,需优化反应条件以抑制副反应。循环水电化学处理设备紧凑。陕西吸收塔电极设施
电极材料抗污染性能大幅提升。北京数据中心电极设施
膜电极是利用隔膜对单种离子的透过性,或膜表面与电解液的离子交换平衡所建立的电势,来测量电液中特定离子活度的装置。其中玻璃电极较为典型,常用于测量溶液的酸碱度。它的敏感膜能选择性地允许氢离子通过,当膜两侧氢离子浓度存在差异时,会产生膜电势,通过测量膜电势就能得知溶液中的氢离子浓度,进而确定溶液的 pH 值。离子选择性电极同样基于此原理,可对特定离子如钠离子、钾离子等进行精细检测,在环境监测、生物医学等领域发挥重要作用。北京数据中心电极设施