凝汽器,这一将汽轮机排汽冷凝成水的关键设备,在汽轮机动力装置中扮演着至关重要的角色。它不仅负责将蒸汽冷凝成水供锅炉再利用,还在汽轮机排汽处建立并维持必要的真空。凝汽器可根据蒸汽凝结方式的不同分为两大类:表面式凝汽器和混合式凝汽器。在表面式凝汽器中,蒸汽与冷却介质(如水或空气)隔绝,在冷却壁面(通常是金属管子)上被冷凝成液体。而混合式凝汽器则允许蒸汽在与冷却介质混合的情况下冷凝,其冷凝物质既可以是水蒸汽,也可以是其他蒸气。凝汽器的冷却水系统需配置水处理设备,防止结垢和腐蚀。天津蒸发式凝汽器装置
壳体:管板将凝汽器壳体一分为二,形成蒸汽凝结区和循环冷却水进出口水室。对于大型凝汽器中冷凝管较长的情形,可采取适当的补偿措施以应对热膨胀。同时,为增强壳体的刚性,需加置加强槽钢、支撑杆和加强肋等结构。水室:凝汽器内设有三个水室:进水水室、回流水室和另一侧的回水水室。循环水经进水水室进入凝结器铜管,再经回流水室转弯后流入凝汽器,较终流回到回水水室和回水管道。为便于现场吊装与维护,水室盖板通常设计成可拆卸的吊轨外移或回转移动形式,并设有放水、放气接口以满足操作需求。混合式凝汽器结构冷却水进口和出口的温度差是衡量凝汽器效率的指标之一。
功能:凝汽器在汽轮机系统中扮演着至关重要的角色。其主要功能在于将汽轮机驱动后产生的蒸汽转化为凝结水,这一过程对于整个热力循环的顺畅与高效至关重要。通过凝汽器的热交换作用,蒸汽在体积急剧缩小后,其原先占据的空间形成高度真空,从而有效地将凝结水汇集至热井之中。随后,这些凝结水经过凝结水泵的驱动,依次流经加热器、给水泵等设备,较终被送至锅炉进行再利用,实现了能量的高效回收与利用。同时,为确保系统的安全与稳定,现代大型汽轮机的凝汽器后端还增设了除氧器,以去除凝结水中的氧气,防止因氧含量上升而导致的管道腐蚀问题。
真空下降的危害:随着凝汽器真空度的降低,蒸汽凝结效率也会明显下降,这将对整个发电系统造成一系列不利影响。首先,真空下降会导致汽轮机的排汽压力升高,进而影响汽轮机的效率。其次,真空度不足还会导致凝汽器内水温升高,这不仅会影响凝结水的质量,还可能对其他设备造成损害。此外,真空下降还可能引发其他一系列问题,如机组振动、轴瓦温度升高等,这些都可能对机组的安全稳定运行构成威胁。因此,必须密切关注凝汽器的真空变化情况,及时采取措施应对真空下降的危害。对于大型火力发电厂而言,优化凝汽器性能是提升整体能效的重要环节。
真空降低的原因:循环水量的减少或中断:当凝汽器的循环水量减少或完全中断时,会导致蒸汽凝结效率降低,进而引发凝汽器真空度的下降。因此,必须确保循环水系统的稳定运行,以维持凝汽器的正常真空状态。轴封汽压力的影响:轴封汽压力低会导致转子收缩,进而使负差胀增大。因此,需要提高轴封汽压力,并关小轴加排汽风机进气门以应对这一问题。凝汽器水位的影响:凝汽器水位高会引发一系列问题,包括排汽温度升高、凝水温度下降、过冷度增加以及端差增大等。此外,水位过高还可能导致备用凝泵自启动、出口压力变化、凝泵电流晃动等问题。凝汽器的主要功能是将排出的蒸汽冷凝成水,从而实现能量的循环利用。混合式凝汽器结构
直接冷却凝汽器则允许蒸汽与冷却水直接接触,从而迅速降低温度。天津蒸发式凝汽器装置
在汽轮机的热力循环中,凝汽设备充当着冷源的角色,通过降低汽轮机排汽的压力和温度,减少冷源损失,进而提升循环热效率。实现这一目标的有效途径是将排汽引入凝汽器,使其凝结成水。通常,以水为冷却介质的凝汽设备包括凝汽器、凝结水泵、抽气设备、循环水泵以及其间连接的管道和附件。较简单的凝汽设备示意图如上所示。汽轮机3的排汽被引入凝汽器,其热量被循环水泵5不断打入的冷却水带走,进而凝结成水并汇集在凝汽器的底部热井中。随后,这些凝结水被凝结水泵1抽出并送往锅炉,作为给水再次利用。凝汽器的压力维持在较低水平,但外界空气可能漏入。为防止不凝结的空气在凝汽器中积累导致压力上升,抽气设备2被用来不断将空气抽出。天津蒸发式凝汽器装置
过冷度产生的原因:A、冷却水管外表面蒸汽分压力低于管束间蒸汽平均分压力,导致凝结温度低于管束间混合汽流温度。B、凝结器内存在汽阻,使下部蒸汽压力低于上部,下部凝结水温度也随之降低。C、蒸汽在凝结器冷却水管间流动时,受管内循环水冷却,液滴温度高于管壁,造成凝结水降温低于其饱和温度。D、凝结器汽侧积聚空气,增大空气分压力,相对降低蒸汽分压力,使凝结水温度低于排汽温度。E、凝结器构造缺陷,如冷却水管束排列不合理,导致凝结水在冷却水管外形成水膜,水膜内外层平均温度低于外表面的饱和温度。凝汽器通过与冷却水进行热交换来降低蒸汽温度。广东汽机凝汽器批发真空降低的原因:在凝汽器的运行过程中,有时会出现真空降低...