ESP32-C61 的射频性能参数经过优化,确保在 2.4GHz 频段实现高效的无线信号传输与接收,适配各类物联网通信场景。其射频前端集成 Balun + 开关,无需外部复杂的阻抗匹配电路,简化了硬件设计,同时提升了射频信号的完整性与抗干扰能力。发射器具备稳定的输出功率,能保证信号在一定距离内的有效覆盖,接收器则拥有较高的灵敏度,可捕捉到微弱的无线信号,降信号传输过程中的丢包率。在多设备共存的 2.4GHz 频段,芯片通过先进的射频干扰抑制技术,减少与其他无线设备(如蓝牙音箱、微波炉等)的信号,保障 Wi-Fi 与蓝牙通信的稳定性。这种优异的射频性能,使基于 ESP32-C61 的设备能在家庭、办公、工业等复杂无线环境中可靠运行,满足物联网设备对通信质量的高要求。深圳市启明云端科技有限公司的 WT013261-S5 系列模组基于此芯片设计,集成 Wi-Fi & BLE 功能,支持板载 PCB 天线或 I-PEX 连接器,专为物联网等领域打造。启明云端的 ESP32-C61 模组,乐鑫芯片赋能,自研款式多样;广州开源机器人ESP32-C61喵伴

ESP32-C61的软件开发包ESP-IDF 5.2已同步发布,乐鑫官网下载量三天突破十万次。新SDK把RISC-V向量指令封装为DSP-LIB,提供FFT、FIR、IIR、矩阵乘法等400+ API,全部符合MISRA-C 2012规范。芯片引入“可配置功耗策略”Kconfig,可在编译阶段选择CPU频率、Cache Wait-State、RF发射功率,官方测试在-40℃工业温箱下,SDRAMless配置连续运行30天无崩溃。ESP32-C61还支持Matter 1.3协议,通过OpenThread与Wi-Fi双栈并发,可在一颗芯片上同时做Thread Border Router与Matter Bridge。乐鑫在B站官方账号放出完整教学视频,从环境搭建到亚马逊Alexa认证需45分钟。开发者若不想自己画板,可直接采用启明云端WT013261-S5模组。杭州低成本开源ESP32-C613D打印启明云端基于乐鑫 ESP32-C61,自研高增益 ESP32-C61 模组!

模组开发框架不成熟、生态差,深圳市启明云端科技有限公司基于乐鑫科技ESP32-C61芯片设计的WT013261-S5 系列模组依托 ESP-IDF 框架提升效率。该框架开源且成熟,包含 Wi-Fi、蓝牙、安全等模块驱动与中间件,支持 FreeRTOS 多任务管理。提供丰富示例程序与 API 接口,开发者可直接复用,无需从零开发底层功能。乐鑫提供详细文档与社区支持,第三方库丰富。成熟的开发生态降了开发门槛,缩短了研发周期,解决了开发难、生态差的问题。与其他模组形成对比
ESP32-C61 的电源管理系统经过深度优化,内置电源管理单元(PMU),支持多种功耗运行模式,适配不同物联网场景的续航需求。在 Active 模式下,芯片全功能运行,满足高算力与实时通信需求;Modem-sleep 模式下关闭 Wi-Fi 和蓝牙射频部分,保留电路运行,可快速唤醒并恢复通信;此外,芯片配备 brown-out 检测器、电源 glitch 检测器,能实时监控电源状态,避免电压波动导致的设备损坏或数据丢失,外设模块还支持电源控制,可关闭闲置外设以节省功耗。深圳市启明云端科技有限公司的 WT013261-S5 系列模组基于此芯片设计,集成 Wi-Fi & BLE 功能,支持板载 PCB 天线或 I-PEX 连接器,专为物联网等领域打造。启明云端紧跟乐鑫技术迭代,持续自研新款 ESP32-C61 模组;

ESP32-C61 的 ADC 模块具备高精度的模拟信号采集能力,为物联网设备的传感数据获取提供可靠支撑。该模块为 12 位多通道 ADC,转换精度可达 4096 个量化级别,能采集外部模拟信号的细微变化,适用于对测量精度要求较高的场景,ADC 支持多个输入通道,可同时连接多个模拟传感器,实现多参数同步采集,提升数据采集效率。此外,ADC 模块还具备校准功能,可通过软件校准消除零点误差与增益误差,进一步提升测量精度。在功耗场景下,ADC 可在 Light-sleep 模式下工作,配合 LP_GPIO 实现传感器数据的周期性采集,采集完成后芯片立即返回功耗状态,兼顾数据采集需求与功耗控制。深圳市启明云端科技有限公司的 WT013261-S5 系列模组基于此芯片设计,集成 Wi-Fi & BLE 功能,支持板载 PCB 天线或 I-PEX 连接器,专为物联网等领域打造。启明云端深耕 ESP32-C61 模组领域,依托乐鑫芯片打造自研产品;绍兴低成本开源ESP32-C61ESP32开源
启明云端的 ESP32-C61 模组,乐鑫芯片自研,适配性强!广州开源机器人ESP32-C61喵伴
ESP32-C61 的 SDIO 接口控制设计细致,通过 Strapping 管脚实现输入采样沿与输出驱动沿的灵活调节,适配不同外部设备的通信需求。芯片的 MTMS 和 MTDI 作为 Strapping 管脚,共同决定 SDIO 接口的沿控制模式,包含四种组合:下降沿采样下降沿输出、下降沿采样上升沿输出、上升沿采样下降沿输出、上升沿采样上升沿输出。这四种模式分别对应不同的信号传输时序,开发者可根据连接的 SDIO 设备特性选择适配模式,确保数据传输的准确性与稳定性。需要注意的是,MTMS 和 MTDI 管脚默认处于浮空状态,上述四种模式均非默认配置,需通过外部电路连接下拉或上拉电阻改变管脚值来实现配置,且 Strapping 管脚在系统复位时由锁存器采样存储值,复位后可作为普通 IO 管脚使用,兼顾配置灵活性与管脚资源利用率。深圳市启明云端科技有限公司的 WT013261-S5 系列模组基于此芯片设计,集成 Wi-Fi & BLE 功能,支持板载 PCB 天线或 I-PEX 连接器,专为物联网等领域打造。广州开源机器人ESP32-C61喵伴
ESP32-C61 的 Flash 加密功能为外部 Flash 存储的数据提供了硬件级加密保护,防止敏感信息泄露。该功能通过硬件加密加速器对外部 Flash 中的程序代码与用户数据进行加密存储,加密算法采用 XTS-AES 标准,这是一种专门针对存储设备设计的加密算法,具备高安全性与高效性。Flash 加密启用后,芯片读取 Flash 数据时会自动,写入数据时自动加密,对上层应用完全透明,不影响设备的正常运行效率。加密密钥存储在芯片内部的 eFuse 模块中,无法被外部读取或修改,即使外部 Flash 被物理拆卸,攻击者也无法其中的加密数据。Flash 加密功能可根据需求选择不同的加密范围,如...